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Abstract 

In this theoretical investigation, we describe the origins and cognitive difficulties involved in the 

common conception of fractional numbers, where a fraction corresponds to some parts of an 

equally partitioned whole. As an alternative, we present a new notion of fraction knowledge, 

called the perspective of measure-proportionality. It is informed both by the historical-cultural 

analysis of the emergence of fractions in social practice and by neuroscientific evidence of the 

propensity of human beings to perceive from childhood nonsymbolic proportionality between 

pairs of quantities. We suggest that this natural neurocognitive propensity of individuals may be 

an instructional link to develop students’ robust knowledge about fractional numbers. 

Keywords: Fraction knowledge, Measuring perspective, Nonsymbolic fraction ideas 

 

Resumo 

Nesta investigação teórica, descrevemos as origens e dificuldades cognitivas implicadas na 

concepção comum de números fracionários, em que uma fração corresponde a umas partes de um 

todo dividido em partes iguais. Como uma alternativa, apresentamos uma nova noção de 

conhecimento de fração, chamada a perspectiva de medindo-proporcionalidade. Ela é informada 

tanto pela análise histórico-cultural do surgimento de frações na prática social quanto pela 

evidência neurocientífica da propensão dos seres humanos, desde a infância, a perceber a 

proporcionalidade não-simbólica entre pares de quantidades. Sugerimos que essa propensão 

neurocognitiva natural dos indivíduos possa ser um elo instrucional para desenvolver o 

conhecimento robusto dos estudantes sobre números fracionários. 

Palavras-chave: Conhecimento de fração, Perspectiva de medindo, Ideias de frações não-

simbólicas 

 

INTRODUCTION 

Algebra is the gateway to higher mathematics; however, the gate’s key is fraction1 

knowledge. Policy makers, psychologists, mathematicians, and mathematics education 

                                                           
1 In this article, we focus specifically on positive fractions; that is, positive rational numbers represented 

in the form 
𝑝

𝑞
, where 𝑝 and 𝑞 are positive natural numbers, {1, 2, 3, … }. 
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researchers alike recognize both anecdotally and empirically that conceptual knowledge 

of fractions and, more generally, rational numbers constitute a necessary condition for 

successful participation and high performance in advanced mathematics including 

algebra, probability, statistics, and calculus (BAILEY et al., 2012; BOOTH; NEWTON, 

2012; LAMON, 2007; 2012; MAHER; YANKELEWITZ, 2017; MATTHEWS; ZIOLS, 

2019; NATIONAL MATHEMATICS ADVISORY PANEL, 2008; SIEGLER et al., 

2012; TORBEYNS et al., 2015; WU, 2001; 2009). Nevertheless, students worldwide 

have difficulties comprehending fractions and operating with them (OECD, 2014). 

Furthermore, competence with arithmetic, which includes fractions, contributes in 

adulthood to employment, wage, and salary opportunities (RITCHIE; BATES, 2013). 

Nevertheless, in the United States, high achievement in mathematics lags among both 

students and teachers, owing mainly to their lack of conceptual knowledge of fractions 

and operations on them (LAMON, 2007; LIN et al., 2013). Learners’ conceptual 

difficulties cause them to order fractions and operate on them incorrectly as well as not 

to conceive of fractions as quantities representing magnitudes and as a dense subset of 

the real numbers (BEHR et al., 1984; NI; ZHOU, 2005; SIEGLER, 2016). Another source 

for the challenge to understand fractions is the whole-number or natural-number bias 

(BEHR et al., 1983; GÓMEZ et al., 2015; NI; ZHOU, 2005; VAMVAKOUSSI; VAN 

DOOREN; VERSCHAFFEL, 2012). That is, the tendency to apply inappropriately 

properties of natural numbers to fraction tasks. For example, students may judge 4/7 to 

be bigger than 2/3  since as whole numbers 4 >2 and 7 >3 (GÓMEZ et al., 2015). 

Finally, researchers note that students have difficulty with the concept of unit, a 

fundamental element for the cognitive construction of fractions (CAMPOS; 

RODRIGUES, 2007). These documented problematic understandings are configured by 

current dominant approaches to fraction instruction. 

In the United States, fraction instruction and consequent student understanding 

center on a specific view of the nature of fractions and its associated definitional 

interpretation—the partitioning perspective 2  (see, for example, BEHR et al., 1992; 

                                                           
2 Recently, Nilce Fatima Scheffer, Universidade Federal da Fronteira Sul (UFFS), and I verified that this 

perspective also pervades how fractions are introduced in the 14 approved textbooks of the 2019 Brazilian 

Programa Nacional do Livro Didático (PNLD). See SCHEFFER e POWELL (in press). The part/whole 

interpretation is also prevalent in Spain (ESCOLANO VIZCARRA; GAIRÍN SALLÁN, 2005). It is also 

important to note that the majority of fraction problems in textbooks require procedural rather than 

conceptual knowledge (SON; SENK, 2010). 
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KERSLAKE, 1986; TZUR, 1999). This definitional interpretation, called the 

“part/whole” conception, defines fractions as discrete, countable parts of an 

equipartitioned whole (e.g., slices of a pizza) and, as LAMON (2001) emphasizes, is 

“mathematically and psychologically … not sufficient as a foundation for the system of 

rational numbers” (p. 150). Though researchers and educators alike know that the 

part/whole and, more generally, the partitioning perspective is epistemologically 

deficient, what is little known is how other perspectives on the nature of fractions and 

definitional views may facilitate learners to develop a robust conceptual understanding of 

fractions. Absence a re-examination and re-formulation of the nature of fractions 

knowledge, ineffective instructional practices about fractions will continue to limit 

learners’ participation in advance mathematics and related disciplines, especially of 

individuals from racial, ethnic, gender, and economic groups already underrepresented 

generally in scientific fields. 

An alternative perspective of fraction knowledge is what we call a measuring 

interpretation. It is informed by both a historical-cultural analysis of the origins of 

fractions (ALEKSANDROV, 1963; COURANT; ROBBINS, 1941/1996; GILLINGS, 

1972/1982; ROQUE, 2012) as well as cognitive and neuroscientific findings about ratios 

as precepts (LEWIS; MATTHEWS; HUBBARD, 2015; MATTHEWS; ELLIS, 2018; 

SIEGLER et al., 2013; SIEGLER; LORTIE-FORGUES, 2014). Based on our measuring 

interpretation, we propose an alternative theoretical view and suggest a new 

epistemological pathway for fraction knowledge. The significance of this pathway is 

twofold. First, it corresponds to human’s cognitive propensity from infancy to discern 

nonsymbolic ratios between pairs of quantities. Second, by basing the pathway on the 

historical source of fractions, it addresses documented problematic understandings 

fractions and promises to enable learners to construct a robust understanding of fraction 

magnitude. Understanding magnitude links numerical development from whole numbers 

to rational (and irrational) numbers. Concerning this development, SIEGLER e LORTIE-

FORGUES (2014) suggest that “[t]he developmental process includes at least four trends: 

representing nonsymbolic numerical magnitudes increasingly precisely, linking 

nonsymbolic and symbolic representations of small whole numbers, extending the range 

of numbers whose magnitudes are accurately represented to larger whole numbers, and 

representing accurately the magnitudes of rational numbers, including fractions, 

decimals, percentages, and negatives” (p. 148, emphasis added). Moreover, the 
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magnitude of fractional numbers is at the core of our theorization of fraction sense 

(POWELL; ALI, 2018). 

In this theoretical investigation, we sketch the historical origins of fractions and 

the emergence of the partitioning interpretation as well as cognitive difficulties that this 

interpretation entails. Afterward, we propose an alternative view—the measuring 

perspective—and discuss how learners can construct first nonsymbolically and later 

symbolically ideas about fractions and their magnitudes. 

 

HISTORICAL-CULTURAL PERSPECTIVE OF THE SOCIAL GENESIS OF 

FRACTIONS 

 

Conceptual views of mathematical objects have historical sources that in turn 

shape those objects’ ontological and epistemological perspectives. Understanding the 

nature or ontology of a mathematical object commences with its historical origin. 

Awareness of the object’s genesis influences perspectives on how one acquires 

knowledge of it or its epistemology. Fraction knowledge is a case in point.  

More than four millennia ago, in Mesopotamian and Egyptian cultures, along the 

Tigris, Euphrates and Nile rivers, with the birth of agriculture, material conditions 

introduced the need to invent cognitive ways to measure quantities of land, crops, seeds, 

and so forth and to record the measures (CLAWSON, 1994/2003; STRUIK, 1948/1967). 

For example, to measure continuous quantities such as the distances of land, ancient 

surveyors stretched ropes, in which the length between two nodes represented a unit of 

measure. In this social practice of measuring lengths as well as areas and volumes arose 

simultaneously geometry and fractional numbers (ALEKSANDROV, 1963; CARAÇA, 

1951; ROQUE, 2012). These measuring practices were part of the social life of ancient 

Egypt. Egyptians employed these practices to construct pyramids more than 1000 years 

before (or 5000 years ago) the famous Ahmes and Moscow papyri were scribed 

(RESNIKOFF; WELLS JR., 1973/1984; STRUIK, 1948/1967). 

Focusing on fractions, ontologically, they emerged to know, for instance, the 

extent of a distance or length, 𝑑, in comparison to a unit of measure, 𝑢. The length equals 

an integral multiple, 𝑎, of 𝑢 and possibly an additional amount, 𝑟, that is less than 𝑢, 𝑑 =

 𝑎𝑢 +  𝑟. The additional amount come to be represented as a ratio of the remaining 

amount to the unit of measure, 𝑟 𝑢.⁄  Later, the ancient Greeks discovered that such ratios 
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were not always commensurable (STRUIK, 1948/1967). As an ontological consequence, 

a fraction can be defined as a multiplicative comparison between two commensurable 

quantities. 

For more than three or four millennia, the use and notation of fractions evolved. 

Only in the 17th century did mathematicians accept fractions as objects on a par with 

natural numbers. The acceptance of fractions permitted equations of the form 𝑎𝑥 = 𝑏 to 

have solutions, 𝑥 = 𝑏/𝑎, without restriction, provided that 𝑎 ≠ 0. It also allowed for the 

generalization of numbers with the four operations—addition, subtraction, multiplication, 

and division—to be a closed domain, an algebraic field (COURANT; ROBBINS, 

1941/1996). The acceptance of fractions to allow for the division of two natural numbers, 

where the divisor is nonzero, leads to equating a fraction to equipartitioning an object 

(DAVYDOV; TSVETKOVICH, 1991). 

 

EMERGENCE OF THE PARTITIONING INTERPRETATION 

 

The theoretical expansion of the domain of numbers to include fractions bestowed 

meaningfulness upon the result of the division of natural numbers when the divisor is not 

a factor of the dividend. Besides, by the late 16th century CE, Simon Stevin of Bruges had 

already written a systematic treatment of both common fractions and decimal fractions in 

his book, De Thiende (The Tenth) (FLAGG, 1983). Therefore, in the 17th century, when 

fractions finally were accepted, rational numbers already had two symbolic 

representations.  

As for fractions, neither their symbolic representation nor their theoretical 

justification as number proved sufficient or even epistemologically desirable to support 

learners’ psychological acceptance and understanding. As such, learners’ mental 

representations of fraction needed support. On this point, DAVYDOV e TSVETKOVICH 

(1991) note the following: 

Fifth graders, and younger school children even more so, cannot be 

given the principle of that division which leads to fractions in a pure 

symbolic form. Its visual correlate had to be found. It is in this role that 

the so-called division of things themselves appeared, their subdivision 

into parts which in the course of teaching can be relatively easily tied 

to terms characteristic for defining ordinary fractions. (p. 24) 
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They argue that the ontological stance that fractions emerge from the division of 

natural numbers becomes associated epistemologically with the physical and visual 

division of objects. These two correlates connect symbolic representations of fractions 

with images such as the physical division of the areas of circles or rectangles into equal 

regions. The fraction 𝑎 𝑏⁄  is then defined visually as 𝑎 equal regions of the area of a circle 

or rectangle divided into 𝑏 of those regions.  

The need for physical and visual correlates of fractions is the origin of the 

partitioned or part/whole interpretation of fractions (DAVYDOV; TSVETKOVICH, 

1991). It has become instructionally privileged from among KIEREN’S (1976; 1988) 

various interpretations of a fraction. Nevertheless, for students, this interpretation can be 

epistemologically problematic. Consider what the shaded regions represent in the two 

circles in Figure 1. 

 
Figure 1 – What fraction do the shaded portions represent? 

Source: GATTEGNO; HOFFMAN, 1976, p. IA5 

 

By presenting this standard illustration for 
3

2
 in Figure 1, GATTEGNO e 

HOFFMAN (1976) question whether students can be faulted for concluding that the 

shaded regions represent 
3

4
 of 1 or even 

3

2
 of 2 without knowing what is considered to be 

the whole or the unit? Students who only work with visual models of things partitioned, 

may develop limited strategies such as counting the number of pieces rather than 

assessing a multiplicative relationship between two quantities. Moreover, conceiving of 

fractions as “parts of a whole,” students have difficulty making sense of fractions whose 

numerator is larger than the denominator such as 
7

4
 and conceding that a fraction is a 

number, not just parts of something (TUCKER, 2008). 

 

NEUROCOGNITIVE RESULTS 

 

Distinct from the ontological perspective of fraction arising from the equal 

division or partitioning of things, our fraction perspective has two primary sources. We 
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have already presented the emergence of fractions with ontological roots in the historical, 

social practice of measuring. Our measuring perspective is also founded on recent 

findings in cognitive science and neuroscience that view ratios as precepts (LEWIS; 

MATTHEWS; HUBBARD, 2015; MATTHEWS; ELLIS, 2018). Infants as young as 6-

months old are capable of discerning two nonsymbolic ratios whose values are 

sufficiently far apart, years before they learn formally about proportionality in school 

(MCCRINK; WYNN, 2007). Based on neuroscientific evidence that a population of 

neurons encode fraction numerals (e.g., 3/6) or words (e.g., one-half) by their numerical 

magnitude and not necessarily separately by numerator and denominator (see, for 

example, ISCHEBECK; SCHOCKE; DELAZER, 2009; JACOB; NIEDER, 2009a; b), 

MATTHEWS e ELLIS (2018) posit that “human beings have intuitive, perceptually-

based access to primitive ratio concepts when they are instantiated using nonsymbolic 

graphical representations” (p. 23). Infants as young as six-months old, pre-school 

children, as well as young adults are able among visual representations to recognize and 

compare accurately ratios of nonsymbolic objects (DUFFY; HUTTENLOCHER; 

LEVINE, 2005; LEWIS; MATTHEWS; HUBBARD, 2015; MCCRINK; WYNN, 2007; 

SOPHIAN, 2000). This perceptually-based neurocognitive ability to discriminate 

nonsymbolic ratios has been term by LEWIS; MATTHEWS e HUBBARD (2015) as the 

ratio processing system (RPS). MATTHEWS e CHESNEY (2015) question how the RPS 

can be leveraged for fraction instruction. Furthermore, MATTHEWS e ELLIS (2018) 

argue that KIEREN’S (1976; 1988) list of fraction interpretations should be augmented 

to include the interpretation of “rational numbers as ratios of nonsymbolic quantities” (p. 

24). 

Humans not only innately perceive ratios of nonsymbolic quantities but also 

process their magnitudes in the same neural region where they represent magnitudes of 

symbolic proportions (OBERSTEINER et al., 2019). Employing functional magnetic 

resonance imaging (fMRI) to measure regional brain activity, MOCK et al. (2018) have 

found a shared neural substrate that processes relative magnitudes of both nonsymbolic 

and symbolic ratios. Specifically, they observed that specific occipito-parietal areas 

including right intraparietal sulcus (IPS) are engaged during proportion magnitude 

processing (see Figure 2). As such, their finding suggests that pedagogic practices that 

present the two types of ratios relationally may be efficacious.   
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Figure 2. Areas of joint neural activation across conditions involving symbolic and nonsymbolic 

fractions. These areas are contained within the intraparietal sulcus (IPS) brain region. 

Source: MOCK et al. (2018), page 13. 

 

Aside from locating regions of the human brain involved in discerning 

nonsymbolic and symbolic ratios, neuroscientific investigations conclude that inhibitory 

processes play a significant role in fraction comparison. Executive functions are 

employed in complex multistep processes and goal-directed problem solving and, 

therefore, common in doing mathematics. Among these mental functions, crucial for 

mathematical competence is the ability to inhibit, stop, or override prepotent or 

automatized mental responses (GÓMEZ et al., 2015). Some researchers operationalize 

and measure inhibition reaction time and accuracy by using a Stroop task, where two 

sources of unrelated information compete for a subject’s attention. GÓMEZ et al. (2015) 

used a numerical Stroop task, where research participants choose one of two single-digit 

numbers presented on a computer screen that has the greater numerical magnitude. The 

competing information was the magnitude of the single-digit number’s font. Their Stroop 

task contains three conditions: (1) congruent items are those in which numerical 

magnitude and physical size are both maximized by the same digit (e.g., 3  vs. 7); (2) 

incongruent items are those in which one digit is numerically greater, but the other digit 

is physically larger (e.g., 3 vs. 7); and (3) neutral items are those in which both digits 

have the same physical size and hence the comparison between them has no competing 

or distracting information other than numerical magnitude (e.g., 3 vs. 7) (GÓMEZ et al., 

2015, p. 802). GÓMEZ et al. (2015) found that middle school students with stronger 

inhibitory control are more likely to be proficient in fraction comparison. They are more 

likely to reason beyond natural number bias when comparing fractions. This result 

suggests that instructional practices that rather than teach learners about fractions as 

compositional entities of two natural numbers prime learners to attend to fractions as a 

unitary entity with magnitude. 
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MEASURING PERSPECTIVE 

 

Employing this pedagogical insight, recognizing the common neural correlates of 

symbolic and nonsymbolic fractions, and incorporating how MATTHEWS e ELLIS 

(2018) interpret a fraction as also being a nonsymbolic quantity, our measuring 

perspective of fraction knowledge consists of two components. It begins with 

nonsymbolic fractions and progresses to symbolic fractions (POWELL, 2018a; b). We 

provide opportunities for students to interact with visible and tangible, commensurable 

and continuous objects or quantities, first to develop a language to describe the 

multiplicative comparative relation among pairs of quantities that they discern, and 

second to practice articulating that language so that they are comfortable verbalizing the 

multiplicative comparisons among pairs of the objects. Afterward, without the aid of the 

physical objects, students imagine them and talk about the multiplicative relations among 

pairs of the objects. Later, once they have the facility with stating relations among 

imagined pairs of quantities, to record their statements, the students learn to use 

mathematical, symbolic notations. These instructional phases are three of four phase of 

the 4A-Instructional Model as described in POWELL (2018b). 

We now illustrate our measuring perspective. We use Cuisenaire rods, a simple 

but inventive collection of physical materials (wooden parallelepipeds) or manipulatives 

with which learners can quickly become familiar (see Figure 3). To become familiar with 

the rods and relations among them, learners need to engage in both free play and 

structured tasks in which they attend to the tangible (length) and visible (color) 

characteristics of the rods. We have learners focus their attention on the length of rods as 

the measurable attribute about which to construct multiplicative comparisons between 

quantities. Cuisenaire rods consist of ten different sizes and colors (see Figure 3). Rods 

of the same color have the same length and vice versa and the length of each color rod in 

sequence—white, red, green, purple, yellow, dark-green, ebony, tan, blue, and orange—

increases by one centimeter, from 1 to 10 centimeters long. Because of their simplicity, 

while students work on mathematics tasks, Cuisenaire rods do not generate high 

extraneous cognitive load (SWELLER, 1994; SWELLER; VAN MERRIENBOER; 

PAAS, 1998). As such, they allow learners to focus mainly on becoming aware of 

relations among the rods, which yield ideas about whole numbers, fractions, and 

operations on them. 
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Figure 3 – Cuisenaire rods, their ten different sizes and colors. 

 

According to the specifics of structured measuring tasks, in small groups, students 

interact with the Cuisenaire rods. Students first use informal and then formal fractional 

language to describe their actions and perceptions. For example, they may measure the 

length of a dark green rod with red rods and notice that its length equals the length of 

three red rods. Then, when they measure a red rod with a dark green rod, they will say 

that the length of a red rod equals one-third the length of a dark green rod. They will be 

introduced to the distinction between the measuring length or unit length and length to be 

measured. The students can notice that the length of a dark green rod equals three halves 

the length of a purple rod or six fourths the length of a purple rod. This noticing can lead 

to an awareness of equivalences. 

Students will orally describe their observations and actions to each other, 

validating their work and the work of others. This work is done orally with the rods and 

represents the first of two nonsymbolic phases. After attaining facility with such rod 

arrangements and their corresponding spoken statements, in the second nonsymbolic 

phase, they will work without manipulating rods and create oral statements summarizing 

fractional relationships. These statements will be similar to the ones they made in the 

previous phase. In the next phase, students will be taught how to symbolize 

mathematically their statements. For instance, if a student stated, nine-thirds of 12 is 

bigger than ten-ninths of 18, the group of students will be shown that statement’s 

symbolic representation: 
9

3
 ×  12 >

10

9
 ×  18. Afterward, students will be invited to 

author statements such as 
1

2
× (

4

5
 ×  15) =

3

4
× (

8

3
 ×  3) . Such statements, when 

authored by students based on relations among objects that they arrange or imagine, 
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provide evidence of their mathematical agency. Finally, students discuss and symbolize 

variants, invariants, and generalizations they have noticed. For example, they may have 

noticed that specific measures (fraction-of) of the same quantity are equivalent the same 

quantity such as these measures: 
1

2
 ×, 

2

4
 ×, 

3

6
 ×, 

4

8
 ×, and so on. This awareness and 

written generalization of it represents the fourth phase of the 4A-Instructional Model (see, 

POWELL, 2018b, for details). 

As an example of the study of fraction-as-number, students learn to work with 

symbolic representations of fractions. For instance, they can be presented with pairs of 

symbolic fractions such as 4 9⁄  and 3 5⁄  and asked to determine their relative magnitudes. 

To decide, employing rod arrangements and reasoning developed during the initial 

sessions, they will construct a unit length and, based on the two given fractions, find other 

lengths that are appropriately proportional to it. As modeled in Figure 4, students will 

configure a line of four orange rods and one yellow rod (45) as the unit length and notice 

that 3 5⁄  of its length—the three blue rods (27)—is greater than the length of 4 9⁄  of the 

unit length—the four yellow rods (20). Students will learn to conceive of a fraction as a 

holistic quantity, representing a multiplicative comparison, rather than a componential 

entity of two natural numbers, its numerator and denominator. 

 

Figure 4 – Comparing the magnitudes of two fractions, using a continuous model, Cuisenaire 

rods. The top line represents the chosen unit length, the middle line measures three-fifths of the 

unit length, and the bottom line measures four-ninths the length of the unit. This representation 

of relative magnitudes shows that the fraction whose value is four-ninths is less than the one that 

equals three-fifths. 

 

FINAL CONSIDERATIONS 

 

We believe that the proposed epistemology of fraction knowledge—a measuring 

perspective—offers several advantages. First, it relates fractions to its historical origins 

and, as such, restores its ontological roots. Second, our approach overcomes the 

documented conceptual difficulties of the traditional, dominant part/whole conception of 

fractions as the act of measuring challenges the current instructional sequence that places 

mixed numbers at the end of fraction learning and makes improper fractions proper 

consequences of multiplicative comparisons between pairs of quantities. Third, the 
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measuring approach helps to conceive a quotient of two natural numbers as a holistic 

magnitude. Fourth, the approach may mitigate the so-called whole or natural number 

basis. Moreover, our approach connects naturally with early-elementary activities around 

non-standard and standard measurement.  

Our proposed view of fraction knowledge needs further theoretical development 

as well as empirical investigations. Theoretically, there are indications in the literature 

that provide substantiation for our proposal (BOBOS; SIERPINSKA, 2017; 

BROUSSEAU; BROUSSEAU; WARFIELD, 2004; DAVYDOV; TSVETKOVICH, 

1991; DOUGHERTY; VENENCIANO, 2007; GATTEGNO, 1987; 1988; MORRIS, 

2000; SCHMITTAU; MORRIS, 2004). Pedagogically, we draw on approach, called the 

subordination of teaching to learning (GATTEGNO, 1970d) and ideas about arithmetic 

learning on continous quantities rather than sets of discrete objects (CUISENAIRE; 

GATTEGNO, 1954; GATTEGNO, 1970a; b; c). 

Empirically, we have studied teachers and students. From studying elementary 

pre-service teachers learning fractions as multiplicative comparisons—a measuring 

perspective—in a pre- and post-test study design, we found statistically significant 

changes in their ability to interpret fraction magnitudes using discrete and continuous 

models (ALQAHTANI; POWELL, 2018). We also observed that the pre-service teachers 

used the part/whole definition of fractions and its associated language to talk about 

comparing quantities multiplicatively. They would say “out of” and always calling the 

measuring rod “one” or “the whole,” which prevented them from conceptualizing beyond 

fractions less than one.  

To avoid these conceptual issues, we elected in a pilot investigation to work with 

second-grade students as they were without previous formal fraction instruction. As we 

designed our tasks for the second-graders, we paced the tasks accordingly and purposely 

structured them to invite the students to compare the lengths of the Cuisenaire rods. From 

this pilot investigation3, we found that the second-grade students, working two hours per 

week for twelve weeks, are able to acquire and appropriate and articulate mathematical 

language to describe and record with mathematical notation perceived ratios between two 

lengths of Cuisenaire rods and respond flexibly and correctly in non-rehearsed situations 

                                                           
3 From 2018 to 2019, the pilot investigation was funded by a grant to the author and his doctoral student, 

Kendell V. Ali, from the Mathematics Education Trust of the National Council of Teachers of 

Mathematics. 
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of comparing multiplicatively two rods without the physical presence of the Cuisenaire 

rods (see Figure 5). Knowing how the rods’ magnitudes compare to one another. to create 

these mathematical statements, the students evoked and manipulated their mental images 

of the Cuisenaire rods. 

 

 

Figure 5 – Writing on a shared piece of chart paper, four different second-grade students authored 

these five fraction-of-quantity inequality statements: 
1

10
 ×  𝑂 <

2

10
 ×  𝑂,

3

4
 ×  𝑃 <

5

 7
 ×  𝐸, 

3

4
 ×

 𝑃 =  
3

4
 ×  𝐷𝑔,

4

10
×  𝑄 =  

2

5
 ×  𝑄, 𝑎𝑛𝑑 

2

4
 ×  𝑃 <  

3

4
 ×  𝑃. Though the students did not have the 

Cuisenaire rods physically present, the letters refer to the color of the rods: 𝑂 and Q = orange, P 

= purple, E = ebony, and Dg = dark green. 

 

These students attended a poor-performing, urban school in an economically 

depressed community. Among the second-grade students of the school, the students in 

the pilot investigation were considered academically below average. Nevertheless, this 

pilot study evidences that a measuring perspective holds promise to address documented 

limitations of traditional approaches to fractions knowledge and broader societal issues 

engendered by these limitations. The limitations affect the broadening and diversity of 

participates in not only mathematics but also generally in science, technology, and 

engineering fields. The continued under-participation in higher mathematics of students 

like the ones in the pilot investigation has severe social and economic consequences 

especially for individuals from underrepresented communities. 
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n. 4, p. 68-93, 2007.   

http://www.sciencedirect.com/science/article/pii/S0022096512001063
http://www.sciencedirect.com/science/article/pii/S0361476X12000392
http://www.sciencedirect.com/science/article/pii/S0732312303000683


Powell, A. B. 
 

   15 
ReviSeM, Ano 2019, N°. 1, p. 1 – 19  
 
 

 

CARAÇA, B. D. J. Conceitos fundamentais da Matemática. Lisboa: Tipografia 

Matemática, 1951. 

 

CLAWSON, C. C. The mathematical traveler: Exploring the grand history of numbers. 

Cambrige, MA: Perseus, 1994/2003. 

 

COURANT, R.; ROBBINS, H. What is mathematics?: An elementary approach to ideas 

and methods. 2nd revised by Ian Steward,. ed. Oxford: New York, 1941/1996. 

 

CUISENAIRE, G.; GATTEGNO, C. Numbers in colour: A new method of teaching the 

process of arithmetic to all level of the Primary School. London: Hienemann, 1954. 

 

DAVYDOV, V. V.; TSVETKOVICH, Z. H. On the objective origin of the concept of 

fractions. Focus on Learning Problems in Mathematics, v. 13, n. 1, p. 13-64, 1991.   

 

DOUGHERTY, B. J.; VENENCIANO, L. C. H. Measure Up for Understanding. 

Teaching Children Mathematics, v. 13, n. 9, p. 452-456, 2007. Disponível em: 

<http://www.jstor.org.proxy.libraries.rutgers.edu/stable/41198995>.  

 

DUFFY, S.; HUTTENLOCHER, J.; LEVINE, S. It is all relative: How young children 

encode extent. Journal of Cognition and Development, v. 6, n. 1, p. 51-63, 2005.   

 

ESCOLANO VIZCARRA, R.; GAIRÍN SALLÁN, J. M. Modelos de medida para la 
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