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Abstract

We focus on the ways in which we can use a frequentist interpretation of probability to
develop suitable methods for statistical inference. The discussion about the controversy
in the foundations reveals that a frequentist conception is highly prone to dispute, as
a justification of this view fails from a rational perspective when the explication of
probability integrates statistical inference. We give an overview on the dispute and the
crucial examples that highlight the deficiencies of a purely frequentist position towards
probability. The concept of probability emerges from a mixture of classical, frequentist,
and subjectivist meanings, which are not easy to separate. A shift in connotation of
probability towards a biased frequentist meaning decreases the scope of probability
or the quality of applications. Probability is a complementary concept, which falls
apart if we reduce it to one view. This gives rise to investigate refined approaches
towards teaching from a wider perspective on the range of meanings of probability
apart from frequentist aspects. Empirical studies show the shortcomings of educational
approaches that ignore subjectivist aspects of probability, which leads to far-reaching
misconceptions not only about the use of Bayes’ formula but also in the perception of
probabilities at large.

Resumo

Nesse texto temos como foco a discussão sobre as maneiras pelas quais uma inter-
pretação frequentista da probabilidade pode ser usada para desenvolver métodos ad-
equados para inferência estat́ıstica. O debate sobre a controvérsia sobre os fundamentos
revela que uma concepção frequentista é altamente propensa a argumentos como uma
justificativa desse ponto de vista falha em uma perspectiva racional quando a explicação
da probabilidade integra a inferência estat́ıstica. Damos uma visão geral do debate e dos
exemplos cruciais que destacam as fragilidades de uma posição puramente frequentista
em relação à probabilidade. O conceito de probabilidade emerge de uma mistura de
significados clássicos, frequentistas e subjetivistas, que não são fáceis de separar. A
mudança na conotação da probabilidade para um significado frequentista tendencioso
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diminui seu escopo ou a qualidade das aplicações. A probabilidade é um conceito com-
plementar que se perde força se o reduzirmos a uma única concepção. Isto dá origem a
pesquisas sobre abordagens para o ensino de uma perspectiva mais ampla sobre a gama
de significados de probabilidade além dos aspectos frequentistas. Estudos emṕıricos
mostram as deficiências das abordagens educacionais que ignoram os aspectos subjet-
ivistas da probabilidade, o que leva a graves eqúıvocos não só sobre o uso da fórmula
de Bayes, mas também sobre a percepção das probabilidades em geral.

1 Introduction

The interrelations between singular concepts and a theory, in which these concepts
are embedded, are mutual. On the one side, a concept gets its own meaning by the
relations of the theorems within this theory. On the other hand, if someone pursues
a specific meaning of a concept, then a usual way is to develop a theory around this
interpretation and see how far-reaching such a theory is. Thus, the mutual relations
between a theory and specific concepts clarify also the concept. That applies also to
the concept of probability.

Probability is open for many overlapping interpretations, which all show a comple-
mentary character. We will go into the details of an analytic clarification of the concept
of probability as has been undertaken by the analytic scientist Stegmüller (1973) and
by Hacking (1965). The usual way to determine the meaning of probability – from a
modern perspective – is to build an axiomatic theory that reflects in its axioms cent-
ral properties of probability and provides a rich system of theorems, which correspond
to intuitive pre-conceptions on probability and allow extrapolating properties of prob-
ability beyond the pre-existing knowledge. Because of the mutual relation between
probability and statistical inference – one cannot separate the two perspectives without
loss of meaning – the meaning of probability cannot be determined in probability the-
ory by itself. Especially, as there are various axiomatic theories of probability that
would justify completely different perceptions. Thus, for investigating the meaning of
probability, it is necessary to investigate also the way, in which we can build and justify
statistical inference.

The philosophical debate in the 1930s has revived the conflict between material
objective interpretations of probability, mainly related to an interpretation as something
connected to relative frequencies and as a degree of belief that has significant closeness
to something connected to personal probabilities. Both interpretations have emerged
in an axiomatic theory, which serves as a justification of the respective interpretation,
Kolmogorov (1933), for the relative-frequencies conception, and de Finetti (1937), for
the degree-of-belief conception. Within the frame of probability theory, there was and
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is a strong preference for the objectivist variant, especially for the need of an empirical
view in physics where probability plays a lead role with the progress in thermodynamics
by Boltzmann since the 1870s (see Steinbring, 1980).

However, the Bayesian Controversy in the foundations of probability looked beyond
probability theory. If probability is something like relative frequencies in experiments,
then it is the role of statistical inference to determine the conditions, under which we can
measure probability by relative frequencies. Clarifying these conditions underlying the
measuring process and the final precision attained, influences the meaning of probability.
Thus, the methods of statistical inference shape the concept and the scope of probability.
As these methods are based on probability, a mutual interrelation between probability
and statistical inference emerges, which attains the character of a complementarity.
The controversy was fuelled by the way, either school of probability tried to develop a
theory of statistical inference. We go into more details of the controversy and clarify
how the integration of statistical inference introduces a shift in rationality, objectivity,
and scientific character of the methods.

Just to mention already here the resulting dilemma of the analysis: For the pre-
valent objectivistic perception of probability based on the meaning of probability as
connected to something like relative frequencies, the theory of probability based on the
Kolmogorov axioms (1933) is undisputed and justifies a frequentist perception of prob-
ability. Yet, the “theory” of statistical inference (which is not an axiomatic extension
of probability theory) has severe rationality gaps, which can lead to bad decisions. For
the subjectivist meaning in the form of degree of belief, the de Finetti (1937) theory of
probability (also an axiomatic theory) justifies the perception of a personal belief. The
advantage here is that the theory of statistical inference can directly be connected to
conditional probability and thus to probability so that it is undisputed and rational.
Yet, the personal meaning of probability based on the approach seems unacceptable for
many scientists, especially from the point of view of physics where probability plays an
eminent role.

2 Conceptions of Probability

While it was comparably easy to find a satisfactory solution for an axiomatic basis for
probability, the crux was to build up from that framework a theory of inference that
would allow for a connection of this conception to the real world. A statistical theory of
inference that would also justify the tight connection between probability and statistical
inference within an unambiguously accepted theory.
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2.1 Emergence of probability

The great dividing line between several approaches towards probability is whether we
perceive probability as a mere property of the real world, irrespective of beliefs and
convictions of persons, or whether we perceive probability primarily as a degree of belief
of a (rational) person. The first group of probability perceptions is called objectivist,
the second subjectivist (as distinct from subjective, as we assume a rational person in
the background).

Hacking (1975) addresses these aspects as the statistical and the epistemic side of
probability. It is interesting to trace both sides in the early history. In the poem de
Vetula from the 13th century (see DAVID, 1962), at first sight the epistemic view is
pre-dominant, counting the possibilities to give reasons for or against a bet on A. Yet,
as a consequence, one would put wagers on A according to expected gains as “you
will learn full well how great a gain or loss any of them is able to be” (BELLHOUSE,
2000, p. 135, cited from BATANERO, HENRY, & PARZYSZ, 2005, p. 20). The
latter statement refers to the statistical (empirical side) of probability. The historical
example highlights that right from the beginning of documentation both sides, epistemic
and statistical, were present and they back up each other to convey the meaning of
probability. It even goes further than simply relate a combinatorial probability to
statistical frequencies as it already establishes a meaning of a tendency of the game
to produce specific results, which comes close to the modern propensity conception
of probability by Popper (1959). By his Law of Large Numbers (LLN), Bernoulli
(1713) was the first to establish successfully the relation between the epistemic side
of the multiplicity of cases favourable to a bet (event) and the empirical-statistical
side. His “golden theorem” reveals a further complementary character of probability
– combinatorial probability makes sense only if it links to statistical probability and,
as then they had no way to define statistical probability, it made sense only if it was
linked to combinatorial multiplicity. We use the term complementarity from physics
from Bohr (1928), in the sense of Otte (1984): Two concepts are complementary, if it
is not possible to separate them without severe loss of meaning.

The next step of conceptual progress was the dispute about Bayes’ (1763) theorem:
First, the status of the so-called prior probability links neither to combinatorial mul-
tiplicity nor to relative frequencies. These probabilities were in fact derived by the
conception of a bet with equal stakes for the outcomes in the experimental device and
were based on “complete ignorance”. The result was equal probabilities for that what
now is called prior probabilities in Bayes’ theorem. The character of this probability
was seemingly subjective, though in some logical sense. The argument about total
ignorance was later used (misused) by Laplace (1812) to justify his first definition of
probability based on equiprobability.
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The developments of modern physics, especially in thermodynamics in the second
half of the 19th century made it necessary to find a suitable mathematical basis for
probability in physics (see STEINBRING, 1980) as David Hilbert (1900) expressed
it in his famous agenda of the most important mathematical problems. A theory
directly based on the idea of probability as idealised relative frequencies, as von Mises
(1919) attempted, failed. The indirect characterisation of Kolmogorov (1933) by an
axiomatic theory was acknowledged as the solution of a probability theory that allows
for a frequentist interpretation of the concept. Shortly after, de Finetti (1937) found
an axiomatic solution for the idea of probability as a degree of belief. More about the
fascinating history of the concept of probability is in Kapadia and Borovcnik (1991),
or in Borovcnik and Kapadia (2014).

2.2 Classification of the meanings of probability

Before we expose the problematic of statistical inference, we summarise the conceptions
of probability focussing only on three main meanings (the classical a priori, frequentist,
and subjectivist), which are sufficient from an educational point of view. We refer to
the terminology of APT, FQT and SJT of Çinlar (2011), and Borovcnik and Kapadia
(2014).

Classical a priori theory (APT). The first definition of probability by Laplace (1812)
of a combined event relates it to the ratio of favourable to all possible outcomes. It
is well known that this definition is circular as it is based on the equal likelihood of
elementary outcomes and likelihood is only another word for probability here. Yet, this
conception of probability is essential not only for educational purpose. It determines
values for the probability a priori, i.e., prior to any data, hence a priori theory.

Frequentist theory (FQT). The probability of an event is estimated from the observed
relative frequency of that event in repeated trials. Exact values of probabilities are never
obtained by this procedure. This is an a posteriori, an experimental approach based on
information after actual trials have been done. The problematic here originates from
the exactification of repeated trials. Von Mises (1919) used a so-called Regellosigkeit,
in modern terms; this refers to independent identically distributed experiments (iid).
Probability is defined as the limit of relative frequencies but such a limit can only be a
façon de parler as in reality it never can be checked.

Subjectivist theory (SJT). Probabilities are evaluations of situations, which are in-
herent in the individual’s mind and thus not properties of the external world, which is
implicitly assumed in the two other approaches. The basic assumption is that individu-
als have their personal probabilities. These probabilities link to an implicit preference
pattern between decisions. By data, one can update such personal probabilities by
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Bayes’ formula whence after enough data, an SJT would have nearly the same probab-
ilities as an FQT. Yet, with less data, there remains also a distinction in the probability
values not only in the conception of probability.

Structural view. The structural approach serves as a theoretical framework. Formal
probability is implicitly defined by a system of axioms and the body of definitions and
theorems, which may be deducted from these axioms. One can derive probabilities
from other probabilities by means of mathematical theorems, yet, with no justification
for their numerical values in any application. This structural approach does not intend
to clarify the nature of probability, though its theorems are an indicator of possible
interpretations. As the axiomatic theories for the two main conceptions of probability
(FQT and SJT) correspond to each other, they are – structurally – quite similar.

In Table 1, we summarise the views of Barnett (1982, p. 65), Batanero, Chernoff,
Engel, Lee, and Sánchez (2016), Good (1983, pp. 70), Borovcnik and Kapadia (2014,
pp. 25), and for the scenario character of probability, Borovcnik (2006) (italics by the
current author).

Some remarks on Table 1: Intuitive views may assume an archetypal character ac-
cording to Batanero and Borovcnik (2016). In the sense of Popper (1959), propensity
meaning reformulates a probability statement as a physical property of an object or
situation to produce events, which may more pronouncedly called a tendency. Cred-
ibility differs from subjective probability by the way that the personal judgement is
based solely on logical reasons (and not on personal preferences) though probability
is attached to judgements of “persons” about reality rather than it were perceived as
property of reality. Borovcnik and Kapadia (2014) lay a focus on personal probabil-
ity as in decisive places in inverse inference (reasoning from data back to hypotheses)
approaches of logical probabilities have failed.

Axiomatic view leaves the exact interpretation of probability open (HILBERT, 1900)
though it builds a framework for an initial intuitive conception of probability; it was
provided by Kolmogorov (1933) for the ideas of relative frequencies and by de Finetti
(1937) for the idea of probability as subjective degree of belief. The scenario character
of probability is resumed in modelling where one would base the analysis on a pseudo
model, a scenario, regardless whether it fits well to the real situation or not. By the
scenario approach, Borovcnik (2006) shows how it is possible to derive conclusions with
a formal probability that has strong qualitative SJT character and definitely is void of
an FQT interpretation.
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Table 1: Classifications of meanings of probability in original sequence except for Good.

Barnett Batanero et al Good
Borovcnik and

Kapadia

Intuitive views:
Just stating the
role of intuitive
views that may
play a role for [un-
derstanding].

1) Degree of belief
(intensity of con-
viction), belonging
to a highly self-
contradictory body
of beliefs. [ . . . ]

Classical :
Symmetry consid-
erations; ‘equally
likely outcomes’.

Classical meaning :
Based on an as-
sumption of equi-
probability [. . . ]
justified by the
disputed prin-
ciple of insufficient
reason.

Classical a priori
theory (APT):
Probabilities are
given a priori (by
symmetries or the
principle of insuffi-
cient reason).

Frequency :
Frequentist; em-
pirical; relative
frequencies in
‘repeatable’ situ-
ations.

Frequentist mean-
ing :
Based on a “limit”
of relative frequen-
cies in a repeat-
able experiment.

5) Physical probab-
ility
(material prob-
ability, chance,
propensity; this
last name was sug-
gested by K. R.
Popper).

Frequentist theory
(FQT):
Probability is
something like
idealised frequen-
cies. A posteriori
estimated from
data.

Propensity mean-
ing: Physical dis-
position or tend-
ency, [to connect]
long-run frequen-
cies and an ap-
plication to single
cases [. . . ].
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Table 1: Continuation

Barnett Batanero et al Good
Borovcnik and

Kapadia

Logical :
Objective; intrinsic
‘degree-of-belief’
as a logical meas-
ure of implication.

Logical meaning :
Objective degree
of belief, revised
under new experi-
ence.

4) Credibility
(logical probab-
ility, impersonal,
objective, or legit-
imate intensity of
conviction).

Subjective:
Personalistic; indi-
vidual assessment
of ‘rational’ or ‘co-
herent’ behaviour.

Subjective mean-
ing :
Subjective degree
of belief, revised
under experience.

2) Subjective prob-
ability
(personal probabil-
ity, intuitive prob-
ability, credence).
[Consistency is re-
quired].

3) Multisubjective
probability [ . . . ].

Subjectivist theory
(SJT):
Probabilities are
personal yet ra-
tional evaluations.

Axiomatic view :
Mathematical the-
ory based on ax-
ioms.

6) Tautological
probability.
In modern statist-
ics, it is custom-
ary to talk about
ideal propositions
known as “simple
statistical hypo-
theses”.

Structural view :
Rich theory based
on axioms that
captures the ba-
sic idea of the
concept.

Scenario character
of probability :
Investigation on a
“what if?” basis.
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3 Characterisation of probability

In the analytic theory of science, a meaning of a concept is justified by developing a
theory around this concept. The richer this theory is and the more phenomena of reality
are reflected by derived concepts and theorems, the better is the justification for the
initial meaning of the concept (STEGMÜLLER, 1973). Such a theory provides solutions
for the phenomena; the interface between this theory and applications is characterised
by this basic meaning, which allows translating from the situation in reality to the
model at theory level. There are several criteria to judge the quality of a foundation:
Does the theory allow dealing with as many phenomena and problems as possible? Is
the development of the theory self-contained without rationality gaps? The best way
to answer the second question is to formulate the basic rules for the concept in the form
of axioms and then use only logic and mathematical relations to build the theory.

If we compare the two main ways to conceive the concept of probability, it becomes
clear that there is some substantial interest to favour an FQT over an SJT interpretation
as this would pave the way for a direct empirical connection for probabilistic hypotheses.
That means that theories and statements (hypotheses) would have an empirical meaning
and could be open for something like a statistical test that would provide an objective
test of such hypotheses against empirical facts. That is what science should guarantee:
statements that do not depend on personal judgement and “taste”, but are rather open
for such a test that is undisputed between different persons, i.e., free of subjective
elements. If an explication of the concept of probability as connected to an FQT
meaning is the goal of a scientific project in the foundations of probability, then the
concept of probability cannot be solely explained by a theory of probability. The
concept of probability then has to include proper methods for an empirical examination
of probabilistic statements (statistical hypotheses). How rational such methods are will
influence the conception of probability and its character as an objective term (i.e.,
independent of personal judgement).

FQT probability is indirectly determined by a theory, which partially characterises
this concept. Though an axiomatic theory lets the concepts free of any meaning, the
attempt of Kolmogorov is focused on a justification of FQT and usually probability
within this approach is interpreted as something that is linked to relative frequencies
in the long run. The term “partially characterised” refers to the fact that – in the
objective perception of science – the empirical testability of probability has still to be
established so that probability theory is incomplete. It has to be supplemented by a
theory for statistical inference that provides methods for testing probability statements
against empirical entities (the relative frequencies). In the objectivist framework, vari-
ous methods have been developed for the purpose of statistical inference.
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There are several axiomatic settings for probability so that there are ‘legitimate’
competitors for its meaning. Accordingly, within probability theory, it is not possible
to restrict probability to one meaning. The openness towards diverse interpretations
gets even more weight, as statistical inference lies beyond the scope of probability
theory. Furthermore, the basic axioms do not cover the concept of independence, which
is defined as a simple product rule for events. Yet, if the meaning of independence is
determined by a definition solely based on probability, how can probability be explicated
by the axioms and an additional reference to independence? Kolmogorov (1956, p. 9)
recognises this vicious circle (italics from this author):

“[. . . ] one of the most important problems in the philosophy of the natural sciences is [. . . ]

to make precise the premises which would make it possible to regard any given real events as

independent.”

The usual way out of this dilemma is by explaining statistical independence by a
vague reference to causal independence but that is more of a rhetoric trick than an
explication as the two concepts are on completely different levels at different grades
of precision (Borovcnik, 1984, p. 164). These difficulties with defining the concept
of independence are one fundamental reason for adherents of an SJT conception of
probability to replace it by the concept of exchangeability, which has been introduced by
de Finetti (1937); see also Barnett (1982, p. 78). Exchangeability is a form of symmetry,
which is easy to check by its influence on the betting behaviour: if the sequence of
statements is of no influence on the elicitation of odds, then exchangeability applies.
That is, to explain exchangeability needs no reference to vague causal arguments. In
addition, the central theorems (such as the LLN) of probability still hold. Statistical
independence also provides the basis for the concept of a random sample (which is
necessary to combine several data).

Statistical tests of probability statements without independence (and hence without
reference to random samples) would not be tractable. One has to guarantee independ-
ence for statistical tests, which is referred to a further background hypothesis that
usually does not undergo the same statistical test but is rather inspected by “rules
of thumb” or simply claimed to be valid. Thus, independence is constitutive for the
concept of probability within probability theory and is a basic constituent of statistical
tests so that the concept of independence substantially contributes to an FQT approach
towards probability. Because of its inherent problems, subjectivists have replaced it by
exchangeability.
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4 Statistical and Bayesian inference

Statistical inference comprises methods within an objectivistic framework for probabil-
ity related to an FQT interpretation of probability, while Bayesian inference subsumes
methods within a subjectivist framework related to an SJT interpretation.

4.1 Developing a theory and methods of statistical inference

We start with some comments on hypotheses. We discern deterministic hypotheses,
which are logical all-statements, and statistical hypotheses, which include a probability
statement. A typical deterministic hypothesis is “All swans are white”. We can falsify
such a statement if we find one counter example (e.g., one black swan). A typical
probabilistic hypothesis is “The probability of Head with a specific coin equals p”.

The term “statistical data” comprises knowledge from observation (the empirical
component) and background knowledge (the theoretical component). This background
knowledge refers to the class of statistical hypotheses (as expressed by probability dis-
tributions), which form the basis of the empirical test (e.g., the family of normal distri-
butions) if a specific statistical hypothesis (a normal distribution with specified para-
meters) undergoes such a test. Such knowledge attains the character of a background
hypothesis (a hypothesis that is not questioned though it could be chosen differently).
A further background hypothesis refers to the independence of single data; it allows
regarding the data for the test as result of a random sample. The following example
may illustrate the relevance of background hypotheses.

The hypothesis P (Heads) = p for a specific coin cannot be investigated in isolation, as it would

seem at first sight. We have to assume that the number of Heads in n trials follows a binomial

distribution B(n, p); this type of distribution reflects the independence of the single trials. Within

the test, this background hypothesis is not questioned.

Deterministic hypotheses (laws) are relative to acknowledged data definitely falsifi-
able but not verifiable. Yet, statistical hypotheses are neither verifiable nor falsifiable:

If a sample of 20 throws yields 12 Sixes, it may seem convincing to reject the hypothesis “Probability

of a Six in throwing a specific dice equals 1/6”; yet, there is no way to exclude logically that such

an event can be observed if the hypothesis really applies.

There are differences in the character of hypotheses. As deterministic hypotheses
can definitely be rejected (if one finds a counter example), only type-II errors can occur
(i.e., a false hypothesis is erroneously not rejected). For statistical hypotheses, two
types of errors can occur: additional to the type-II, also a type-I error can occur, when
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a true hypothesis (it really applies) is erroneously rejected (BOROVCNIK, 2015). A
deterministic hypothesis can be judged in isolation (if it is judged as false, it is definitely
false) whereas it is not possible to judge a statistical hypothesis in isolation, as if it is
judged as false, it still can apply. We need to know the degree to which it can apply –
i.e., we need the type-II error (a wrong hypothesis is erroneously not rejected) but that
depends on the alternative hypotheses considered. Consistently, checking a determin-
istic hypothesis has to provide rules for rejecting such a hypothesis, while a procedure
for checking a statistical hypothesis can only provide statements about the support of
hypotheses. Preferably, support functions would be probabilities but an objectivistic
framework excludes that, as probabilities must have an empirical connection to relative
frequencies in an experiment and there is no such random experiment for hypotheses.
A probability structure for the support of hypotheses would clearly be an option for
the subjectivist position, as herein probability is not restricted to empirically testable
elements.

For the objectivist position, the used methods comprise the likelihood of statistical
hypotheses and indirect approaches such as the Neyman-Pearson test policy (NEYMAN
& PEARSON, 1928; NEYMAN, 1937; PEARSON, 1966) and the Fisherian significance
test (with “fiducial probabilities”). These approaches use direct or indirect notions to
express the support of hypotheses that lack a probability structure so that they are
harder to interpret.

4.2 On the logic of support

We seek a solution for an approach for statistical inference first as an extension of
an FQT probability (which is characterised by the Kolmogorov theory). We have
already argued that this statistical inference has a direct influence on the character
of probability. First, we define the conception of support of hypotheses by an example.

We toss a coin 12 times. As a result, we get 9 Heads. We are interested in the probability p, with
which the coin falls Head:

P (No of Heads = 9|p) = (12 choose 9)× p9 × (1− p)3.

This probability for the empirical result No of Heads = 9 is much smaller under
the hypothesis of an ideal coin (p = 0.50) than it is under the alternative hypothesis
of (p = 0.75): the probabilities are 0.0537 and 0.2581. The hypothesis “the coin is
ideal” provides a much smaller probability for the observed event than the alternative
hypothesis does. Therefore, intuitively, we have to take this alternative hypothesis
much more into account; we say, this alternative (hypothesis) is much better supported.
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This is a typical likelihood argument: The likelihood L of a hypothesis h in view of
a specific observation E is simply the probability that h provides for the observation:

L(h|E) := P (E|h).

There are some immediate statements about likelihood support arguments to place
here. Likelihood arguments

� attain only sense if we compare their values between competing hypotheses;

� are NOT probability statements for hypotheses (which would be grossly incon-
sistent within an approach aimed at an experimentally testable conception of
probability);

� miss to provide logical conclusions from (empirical) data to (theoretical) hypo-
theses.

The so-called likelihood principle of Birnbaum (1962) states that for the judgement
of hypotheses it suffices to refer solely to the likelihood of hypotheses under the actual
observation and nothing else. As rational as such a principle may seem, there is no
further justification for it. It is worthy to note that not all standard tests in statistics
follow the likelihood principle. Stegmüller (1973) characterises the concept of support
by axioms and interprets support always as likelihood support. In order to make an
efficient use of the concept of likelihood, Stegmüller introduces the term combined
statistical statement as h = 〈D,E〉, where D is a statistical hypothesis that specifies a
specific probability distribution, and he defines the likelihood L of combined statistical
statements as

L(h) := P (E|D).

The difference to before is, that now both E and D could be fixed (earlier E was fixed
only and D was perceived as variable). The “symmetric” form of likelihood serves for
two purposes:

� The conclusion from data to hypotheses (inverse inference) if E is fixed.

� The conclusion from hypotheses to data (direct inference, or single case) if D is
fixed and E is variable.

The so-called likelihood rule determines the shift from likelihood values to support
statements. Hacking (1965) presents the likelihood rule in a very general form, while
Stegmüller (1973) modifies the rule to a logical conjunction of the likelihood principle
and a rule for the single case. The generalised likelihood serves its purpose as it combines
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both basic statistical tasks (see before). A more detailed representation may be seen
from Borovcnik (1984, pp. 200-207). Stegmüller (1973) follows the ideas exposed in
Hacking (1965, pp. 59).

4.3 The project of characterising probability on an objectivist
basis

With the likelihood principle and the generalised likelihood function, the project of an
explication of the concept of probability based on Kolmogorov’s theory and an FQT
interpretation is finished. The clarification of probability from an analytic point of
view is complete and Stegmüller perceives statistical probability in this extended sense
(BOROVCNIK, 1984, p. 179). We are going to represent the critique of Stegmüller and
Hacking to other approaches to a statistical inference based on an FQT interpretation
of probability and the superiority of the likelihood test theory. We insert some meta-
considerations about the type of this project and elaborate further on direct and inverse
inference.

We may see the procedure of Stegmüller (1973) in the following way. He starts
from a pre-fixed idea of probability (it has something to do with relative frequencies
in the long run); he develops an analytic explication of the concept of probability by
a reference to Kolmogorov’s theory and builds a theory of statistical support based
on the likelihood principle and the (generalised) likelihood rule. From that basis, it
remains to develop statistical methods for the two basic statistical tasks, direct and
inverse inference.

Before we go into the details of statistical methods, we already present an essential
weakness of Stegmüller’s approach here. By his symmetric generalised likelihood, he
succeeds to solve both direct and inverse inference in the same formal way. Yet, the
symmetric approach levels off the essential differences between the two problems. The
main reason for that undue symmetry is that the single case (direct inference) bears
the structure of probability while inverse inference lacks such a structure with probab-
ilities. Therefore, it is an unsuitable way to wipe out the differences and declare the
problem as solved. Since Bayes (1763), there has been a dispute about the status of
the prior probabilities used for the inverse conclusion. While the objectivist conception
of probability with an FQT meaning has proven successful for the single case, inverse
inference causes a shift from objective to subjectivist perceptions. Consistently, we will
investigate objectivist methods for statistical inference developed so far and we will use
the results of the analysis for a re-evaluation of the subjectivist-objectivist controversy.

In that re-evaluation, the problematics of background hypotheses plays a special role.
There are two different types of background hypotheses: i. A family of distributions,

ReviSeM, Ano 2021, No. 3, 42–76 55



Borovcnik, M.

on which the mathematical considerations (the mathematical model) is based upon.
ii. The independence of repeated trials that lead to combined empirical data. Of
course, considerations of simplicity decisively influence the determination of background
hypotheses. In that respect, statistics makes no difference to other areas of mathemat-
ics. Yet, Stegmüller (1973, p. 135) explicitly claims that it is possible to apply the
statistical methods based on his theoretical framework to these background hypotheses
with no further difference to the specific statistical tests. That point, however, remains
a mere claim, as we will see below.

4.4 Direct inference and inverse inference

We identify two distinct statistical tasks, the conclusion from a specific probability
distribution (a statistical hypothesis) to ‘future’ data, and the conclusion from observed
data to potential statistical hypotheses.

Direct inference or single case. What does a probability statement mean for reali-
ty? More precisely, what can we conclude from a statistical hypothesis (a probability
distribution) for a ‘future’ event? The single-case rule determines the meaning of such
probability statements: The support for the statistical hypothesis e “E occurs in a
concrete trial” is exclusively determined by P (E), which is the objectivist probability
for the event E as specified by a model. There are several attempts to justify the
single-case rule (see BOROVCNIK, 1984, pp. 194-199):

Näıve objectivists-frequentists justify the single-case rule by “long-run” arguments or
they request “axiomatically” that an “optimal” decision in the long run is also optimal
for the single case without any deeper reason. Yet, considerations in Borovcnik (2015)
show that optimal decisions adapted to the single case are different from those that
optimise long-term behaviour, which highlights that it is not easy to mediate between
single-case and long-run.

On a theoretical basis, Stegmüller justifies the rule by a reference to the likelihood
support theory. This approach, however, is circular: On the one side, the likelihood
rule attains its authorisation only because it provides a derivation of the single-case
rule; on the other side, it is only possible to justify the single-case rule by a reference
to the generalised likelihood rule.

The propensity meaning of probability, suggested by Popper (1959), demands the
applicability of a probability statement to a single case by a “tendency” argument; yet
again, it offers no justification, as it is a rewording rather than an elsewhere grounded
property of probability.

A subjectivist justification refers to accepted odds in bets and if no further informa-
tion becomes available for the single case, then the odds are completely determined by
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the probability so that the probability statement in general and the statement for the
single case coincide.

Yet, direct inference really is a minor part of the controversy between objectivists
and subjectivists. It is worthy to note that one has to separate the problem of the
justification of the single-case rule from the problem of the correct application of this
rule, as the probability statement could be ambiguous. This causes difficulties regardless
whether one adheres to an objectivist or a subjectivist position towards probability.

Inverse inference – Inference from data to hypotheses. Inverse inference means to
conclude from empirical data to probability models latent behind the random process.
Bayes was faced with the problem of a Bernoulli chain producing binary data with an
unknown probability p for the 1s (1 – p for the 0s) and wanted to make an inference
about p when a series of n trials results in k 1s (and n–k 0s). Bayes used an argument
– known as Bayes’ postulate – with complete lack of knowledge about p to derive equal
probabilities (a uniform distribution) for the possibilities, which are here continuous
values of p in the interval (0, 1). In Bayes’ setting, the parameter p in the random
experiment provides a binomial distribution for the data (the number of 1s). Inverse
inference on p relative to the data k of n is based on a “revised” distribution for p (a beta
distribution). For the details, the reader may consult Good (1983) or Barnett (1982).
We are only interested in the “structure” of the situation, which can be summarised
as discrete version of Bayes’ theorem; a simplified case is in Batanero and Borovcnik
(2016), the general case with continuous densities is in Stegmüller (1973, p. 121).

Bayes’ formula. Let H1, H2, · · · , Hr be r exclusive and exhaustive hypotheses for a
stochastic situation and E be an empirical observation. If the probabilities P (Hi) were
known as well as the probabilities for E under the various hypotheses, i.e., P (E|Hi),
then the hypotheses attain a new probability conditional to E in the following form:

P (Hi|E) = P (Hi)× P (E|Hi)/P (E) α P (Hi)× P (E|Hi). (4.1)

Hereby, the term P (E|Hi) represents the likelihood of Hi relative to the empirical
data E, and P (Hi) stands for the prior probability (prior information, an information,
which applies before the data E becomes known). The term on the left side is called the
posterior probability of the hypothesis relative to the data E. This posterior probability
attains the structure of a probability (i.e., it fulfils Kolmogorov’s axioms, or better, de
Finetti’s axioms) and integrates the data into the support function. (The last part
of the formula after the α sign is a simplification. As long as the data E is fixed,
the solution is proportional to the numerator and the denominator works only as a
normalising constant to make the sum of all probabilities to 1.)

We mentioned that Bayes – within his experimental device – had derived a uniform
distribution for the parameter p. Laplace (1812) extended his argument to the principle
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of insufficient reason, which obviously represents an epistemic flaw. How can the prin-
ciple of insufficient reason, overly interpreted as absolute no knowledge, emerge into a
uniform distribution on the possible cases, which undisputedly represents some sort of
knowledge.

Bayes’ formula bears a great potential. Together with a so-called conditional con-
ditionalisation (SEIDENFELD, 1979, p. 5-8; BOROVCNIK, 1984, p. 211), it forms a
complete inductive logic. However, the price for that achievement is very high indeed, as
the information about the hypotheses on the prior probabilities is usually not frequentist
so it leads beyond the objectivist position in the foundations of probability. Objective
Bayesians, as Jeffreys (1948), tried to find logical justifications for Bayes’ postulate.
This endeavour led to irresolvable problems that we may circumscribe by violations of
the invariance principle. Of course, such prior probabilities usually are not open to an
experimental control by relative frequencies. Overall, objectivists, starting from Venn
(1866), refuted Bayesian inference as a solution for inverse inference as they request
that the constituents of methods for judging statistical hypotheses have to link to ob-
jectivist probabilities only (i.e., probabilities that allow for an FQT meaning). Modern
subjectivists as Savage (1962) circumvent the justification of the uniform distribution
(in Bayes’ postulate) by grounding probability as degree of confidence. The objectivist
position discredits such “solutions”, however, as private and thus non-scientific hypo-
theses testing. Yet, one still has to check how the various approaches of objectivists
cope with inverse inference. This is the target of the following section.

5 Objectivist test theories

Within the objectivist school, a strong position in favour of the likelihood test and
against the NP approach has emerged. Likelihood tests are based on the likelihood
support theory, which is thought to be constitutive for an objectivist conception of
probability. To the contrary, Neyman and Pearson (1928) circumvent the support logic
by their policy of testing hypotheses repeatedly. The Fisherian significance test (1925)
– though intuitive – is no acceptable solution from the perspective of foundations as it
lacks any consideration of alternative hypotheses.

5.1 Likelihood test theory

In the literature on the foundations of probability and statistics, the likelihood test the-
ory plays a prominent role since the formulation of the likelihood principle by Birnbaum
(1962). Consistently, Hacking (1965) and Stegmüller (1973) favour this test theory in
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their discussion on the controversy in the foundations. Central notion of this approach
is the likelihood support.

Early discussions of Bayes’ theorem have revealed enormous problems in finding an
objective justification for the prior probabilities P (Hi). It was even doubted – not only
by Venn (1866) – that it would make sense to attribute a probability to hypotheses
in an objectivist sense as it is not open for an empirical test in an experiment with
relative frequencies. Thus, what was left of Bayes’ theorem was the term P (E|Hi),
the probability of an empirical event given the hypothesis Hi, which was interpreted
as support for Hi in the sense of the higher the probability for E, the higher the
support for Hi. Such a thinking formed apparently the background of arguments such
as by Arbuthnot who interpreted the fact E (80 years with a majority of boys in
birth statistics) as an argument for the hypothesis H (a divine order) as P (E|Hc)
is very small. Arbuthnot interpreted the complement Hc to the divine order H as
“randomness”.

In the scientific analysis of the likelihood L(H|E) = P (E|H), it became soon clear
that the likelihood cannot be interpreted in absolute values but only compared to
the likelihood of other hypotheses (HACKING, 1965, p. 59). Birnbaum (1962, p.
271) formulated the likelihood principle according to which nothing else apart from the
likelihood function should influence the support of hypotheses. With this likelihood
principle and a translation of likelihood values into the support of hypotheses, a test
theory could be justified. The support logic thus is characterised as a comparison
between several hypotheses. Loosely speaking, of two hypotheses, we reject the null
hypothesis h0 if the alternative hypothesis hA has a support that is larger than a
specified factor in comparison to the support of h0, which is summarised in the following
two definitions. The support here is operationalised by the likelihood function. A
likelihood test to the level γ based on the empirical data E rejects the hypothesis h0 in
favour of hA if and only if

L(hA|E)/L(h0|E) ≥ γ. (5.1)

If the alternative hypothesis is composed of several distributions (hypotheses), which
we denote as a set ∆, then we have to take the supremum (a mathematical refinement
of the maximum) of the single likelihood values, i.e.,

sup
hA∈∆

L(hA|E)/L(h0|E) ≥ γ. (5.2)

� The choice of the critical number γ quantifies the degree of better support and
determines the critical region (all data that lead to the rejection of the hypothesis
h0).
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� Relative support between two hypotheses is difficult to interpret. For example,
what does it mean that the alternative has double or more support than the null
hypothesis?

It is remarkable that the likelihood support is not defined symmetrically between
the hypotheses as – from the point of support – there is no need to attribute the
role of a null hypothesis to one of the hypotheses under scrutiny (for more details,
see BOROVCNIK, 1984, p. 258). While the likelihood test theory is also favoured
in a theoretical framework of statistics and higher-quality applications, and while it is
that test theory, for which the justifications from an analytical point of view are the
best, for the practice, it remains the difficult task to choose the value of γ of a test
to apply. There is hardly a guidance from its interpretation though γ finally decides
about the decision between the hypotheses. Therefore, there is still a need for a test
theory that allows a more transparent choice of the indices of a test that determines the
actual decision. This is the case for the Neyman-Pearson test theory, which we discuss
subsequently.

5.2 Neyman-Pearson test theory

This test theory represents that one that is still dominating statistical practice and the
teaching of statistics. Neyman and Pearson (1928) follow a completely different path
in their approach. They do not base their considerations on the support of hypotheses
but direct their criteria for finding an optimal test to the general properties of the test
method rather than on properties of the hypotheses. They operationalise the goodness
of a statistical test by an explicit interpretation of probability in an FQT sense.

For direct inference, their way is characterised by a mixture of equiprobability and a
frequentist meaning. Already Fisher (1935) criticised their justification fundamentally;
yet, we will not delve into the details, as anyway direct inference is not the core of the
controversy between objectivists and subjectivists.

For inverse inference, they offer their policy of hypothesis testing, which is decision
oriented. Rather than aiming at a support of the hypotheses under scrutiny including
the actual data, they determine a concrete test by general properties of the “decision
rule” that are operationalised as FQT probabilities. In the simplest case, if the null
and the alternative hypotheses fix a single probability distribution, they compare the
scenarios derived from these distributions on the space of all samples. Any decision
rule is characterised by a subset of samples, which lead to the rejection of the null;
this is called rejection region R. Neyman and Pearson (1928) determine the conditional
probabilities of the already discussed type-I and type-II errors.
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If we denote a rejection dependent on the result of a sample as TA (sample lies in
R) and a non-rejection as T0 (sample lies in the complement of R), we have:

α = type-I error of the decision rule = P (TA|h0) = probability of erroneously
rejecting a valid h0.

β = type-II error of the decision rule = P (T0|hA) = probability of erroneously
staying with a wrong hypothesis.

For simple hypotheses (each fixes one distribution), the errors have a probability
value, which is interpreted in an FQT sense as relative frequency of erroneous decisions
in the long run under the two scenarios that are described by the null and the alternative
hypothesis. The complement of the type-II error, P (TA|hA) = 1–β can be interpreted as
power of the test to “detect” an alternative hA if it in fact applies (is true). The α error
is also termed as size of the test (not to be confused with size of a sample). Neyman
and Pearson pursue the following strategy to find a test with optimal properties: First,
the size of a test is pre-given. That restricts the considered tests, which we ideally
just identify with the rejection region (the subset of all samples that lead to TA, i.e.,
the rejection of the null hypothesis). Second, among all tests with size α, that test is
optimal that maximises the power (that minimises the type-II error). It is essential
that size and power of a test do not relate to the hypotheses under scrutiny but they
are properties of the test procedure. Size and power of a test are interpreted as relative
frequencies in the long run when the test is applied repeatedly.

In the extension of the test theory to hypotheses that are composed of several
probability distributions, Neyman and Pearson introduce further criteria to guarantee
the existence of unique optimal tests. Essentially, these criteria are unbiasedness and
invariance. Despite all critique against the Neyman-Pearson test policy, one has to state
that their optimal tests coincide with tests from the likelihood test theory for many
standard problems. That means one may consider the values for α and β as useful to
fix the ratio γ of relative support for the two hypotheses.

5.3 Critique against objectivist test theories

Within the objectivist school, there has emerged a strong position in favour of likelihood
tests and against the Neyman-Pearson (NP) test policy. Likelihood tests are based on
the likelihood support theory, which is thought to be constitutive for an objectivist
conception of probability. To the contrary, Neyman and Pearson (1928) circumvent
the support logic for hypotheses by their policy of testing hypotheses repeatedly. We
reproduce the core of the critique of Hacking (1965) and Stegmüller (1973) against
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the position of Neyman and Pearson; exactly the same examples, however, provide
an opportunity to lead the likelihood test theory and the support logic beyond its
boundaries of validity and plausibility.

Critique against the concepts of size and power. The following example of Hacking
(1965, p. 87) is directed against the concept of power; at the same time, the example
indicates a weakness of the NP approach, which may be termed as forward vs. backward
look. Given the following test problem of h0 against hA and two tests R and S (see
Table 2). It is worthy to note that these tests act somewhat complementary. Both have
the same size of 0.01 but Test 1 has a much higher power. Yet, Test 1 has obviously a
flaw as it stays with h0 if E1 occurs, an event, which has zero probability under h0, i.e.,
this event cannot occur if h0 applies! That means, Test 1 is much better than Test 2
in the forward look (before samples are available), yet in the backward look, it comes
to an absurd decision if the sample yields E1.

The critique focuses on an interesting aspect of tests, namely the forward and back-
ward look, yet it is inappropriate. Why would one not prefer Test 3 with rejection
region S∗ = {E1, E3}, which also has size 0.01 but power of 0.98, which is the optimal
test for size 0.01. NP optimise the power for a given size of tests, so that one cannot
criticise the concept of power in isolation as it is essential to optimise power, which
interrelates the concepts of power and size.

Table 2: Hypotheses and outcomes in Hacking’s example criticising power

Hypothesis P (E1) P (E2) P (E3) P (E4)

h0 0.00 0.01 0.01 0.98
hA 0.01 0.01 0.97 0.01

Source: Hacking (1965, p. 87)

Test 1 with rejection region R = {E3} has a size α1 = 0.01 and a power 1–β1 = 0.97.

Test 2 with rejection region S = {E1, E2} has a size α2 = 0.01 and a power 1–β2 = 0.02.

Critique against Neyman’s test policy. Neyman states that it is impossible to get
knowledge about the specific hypothesis under scrutiny. Rather, one has to find rules for
rational decisions, which guarantee that erroneous decisions do not exceed some levels
in the long run. This is in-line with Neyman’s näıve frequentist views. It may suggest
some plausibility for his test policy but is not sufficient for an analytic justification of
his test policy.

The probabilities for type-I and type-II errors are conditional (!) probabilities rel-
ative to different scenarios and they are related to repeating the test situation, which
amounts to a meta experiment. Repeating the test situation would imply – if the relat-
ive frequencies should relate to probabilities – that the test situation is repeatable under
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the same conditions independently (the iid assumptions, independent and identically
distributed). This may be a proper assumption about the process of random sampling
for the data on which we base the test. Yet, it is doubtful whether we can think of
the modelling of the whole test situation as an iid situation (including the variables in-
vestigated, the distributions assumed, the hypotheses formulated, and the test statistic
chosen; even the initial problem would have to be always the same).

Other modellers would end up with different variables and a different model. The
chosen model always implies a modelling act with possible errors and this process of
modelling cannot be reproduced ad infinitum. “Essentially, all models are wrong, but
some are useful”, as Box states (BOX & DRAPER, 1987, p. 424). As different teams
would obtain different models, a direct replication of the “subjective” model as an iid
process establishes an artefact. The idea of a repeated test situation under exactly the
same probabilistic conditions may be appropriate in quality control, the context, in
which Neyman and Pearson developed their test policy. However, also here it becomes
essential that one needs to have a prior information about the frequency of h0 and hA,
in order to get a long-run frequency of erroneous decisions as the type-I and II errors
are only conditional to distinct scenarios and have no overall (unconditional) meaning.

Forward and backward look. A further example of Hacking (1965, p. 89) should
corroborate the superiority of the likelihood test theory.

A random experiment may yield outcomes 0, 1, 2, · · · , 37, · · · , 99, 100. In the following, we refer to

37 as one specific outcome, which plays the role of a representative. The task is to test the simple

null hypothesis h0 against a compound alternative hA = {j1, · · · , j100}. The single distributions

are visible from the lines of Table 3. The test should have a size of α = 0.10 with a sample size

of 1.

Table 3: Hypotheses and outcomes in Hacking’s example against NP test theory

Hypothesis P (0) P (1) P (2) · · · P (37) · · · P (99) P (100)

h0 0.900 0.001 0.001 · · · 0.001 · · · 0.001 0.001
j1 0.910 0.090 0.000 · · · 0.000 · · · 0.000 0.000
j2 0.910 0.000 0.090 · · · 0.000 · · · 0.000 0.000
...

...
...

...
. . .

...
...

...
...

hA j37 0.910 0.000 0.000 · · · 0.090 · · · 0.000 0.000
...

...
...

...
...

...
. . .

...
...

j99 0.910 0.000 0.000 · · · 0.000 · · · 0.090 0.000
j100 0.910 0.000 0.000 · · · 0.000 · · · 0.000 0.090

Source: Hacking (1965, p. 89)
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We first discuss the likelihood test:

� If 0 occurs in the sample, then h0 has a support of 0.900 and each of the single
distributions of hA has a support of 0.910 whence the support of hA is slightly
better than for h0. That means 0 speaks slightly for hA; the ratio is 0.910/0.900
in favour of hA.

� If any number different from 0 occurs (imagine it is 37), then h0 has a support of
0.001 while j37 has a support of 0.090 and hence the alternative has (as supremum
of all likelihoods over the alternative) a support of 0.090. That means, any result
different from 0 has a likelihood ratio of 90 in favour of the alternative.

With a critical value for γ of say 4, we decide for h0 if 0 occurs and for hA if any
other number occurs. Stegmüller (1973, p. 183) speaks of an intuitive plausibility
of the support argument, which corroborates the likelihood test as very good. More
complicated is the situation for the NP optimal test:

The NP test cannot use {1, · · · , 100} as rejection region though this would fulfil the requirement
for the size α = 0.10 but the power would be 1–β = 0.090 for any jk from the alternative so that
the power would be less than the size and the test would be biased. To repair the situation, the
NP test has to use the additional criteria of unbiasedness and invariance to come to a best test
that decides in the following way:

Reject h0 if the result of the random experiment yields 0 and an additional random experiment

(that has nothing to do with the present hypotheses) is performed and ends with a specified result

R that has a probability of 1/9. Otherwise, do not reject h0. Such a randomised test has a size

of 0.900× 1/9 = 0.100, which fulfils the requirements.

Hacking and Stegmüller (1973, p. 183) summarise their critique against the NP
optimal test and argue in favour of the likelihood test:

� The likelihood test is based on intuitively plausible considerations of support of
the hypotheses after the sample when the empirical data is known.

� The NP test is derived by formal criteria, which should guarantee a good beha-
viour of the test before the data is collected. Rational behaviour in the forward
look can be quite irrational in the backward look.

We acknowledge that the critique reveals essential differences between the two com-
peting test theories. Yet, the critique is weak as its scope of validity is very restricted.
It addresses low-ranked criteria of the NP approach and it breaks down with samples
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with more than one data. An example of Seidenfeld (1979, pp. 51) backs the critique,
yet it is formulated in terms of confidence intervals so that we omit it here.

Critique against the likelihood theory. We are going to undermine the plausibility of
the likelihood test. For that purpose, we use a formal prior distribution on the single
hypotheses as equal probabilities. This prior distribution is not arbitrary as it repro-
duces essential properties of the likelihood test from before (the 90 times higher support
for the alternative if the experiment shows any number different from 0). Hacking’s
example is continued and Borovcnik (1984, pp. 258) uses it against the likelihood test
as it reveals severe deficiencies of the likelihood test.

For the formal prior distribution on the hypotheses with P (h0) = 1/101, P (jk) = 1/101 for
k = 1, 2, · · · , 100, we obtain the following posterior probabilities using Bayes theorem (we use 37
as a representative for an outcome different from 0):

P (h0|37) = 1/91 P (h0|0) = 9/919

P (hA|37) = 90/91 P (hA|0) = 910/919 .

These posterior probabilities take over the role of the support function L(h|x) =
P (h|x). We can state that any non-zero data supports the alternative by a factor of 90,
which is exactly what the likelihood test from before is based upon. Yet, we also can
see that the alternative hypothesis is supported even much better by the result 0 as the
factor in favour of the alternative is larger than 100. That means, 0 speaks much more
(in the sense of support) for the alternative than 37 (or any other non-zero outcome).
Thus, for a test based on support, rejection should focus on outcomes 0 rather than on
any non-zero outcome (that is what the NP test in fact did!).

Consequently, it is by no means plausible to accept that hypothesis that has a better
support; in particular, support statements are void of plausibility and may lead astray.
The likelihood test bases its intuitive “superiority” on the fact that better support
means something positive. Yet, with a result of say 37, it draws the high likelihood
ratio of 90 in favour of the alternative in an unjustified way. It assumes that we have
waited for the 37 to occur. Any other number would have the same effect. We see that
better support is not something that is an unquestionably good property.

There may be two implications from this critique: i. One should carefully combine
both competing objectivist test theories, as none of them proves superior. ii. One should
leave the objectivist position behind and specify prior distributions on the hypotheses
under scrutiny. Stegmüller (1973, p. 293) gets to the limits of the likelihood test theory
via the paradox of Kerridge; yet, he does not abandon the objectivist position:
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“Perhaps the most convincing thing that remains is the concern: [. . . ] the necessity of a radical

subjectivation of the natural sciences was pointed out if the [subjectivist] view of the concept of

probability were to prevail. The science theorist, before he swallows this bitter pill, will look for

another solution.”

In conclusion, Stegmüller declares Fisher’s fiducial argument as a potential way out
of the crisis. This argument, however, faces the same difficulties as the programme
of the Objective Bayesians (e.g., JEFFREYS, 1948), which may be seen from Good
(1971). Thus, all attempts to avoid prior probabilities in Bayes’ theorem or to find an
objective justification for specific priors are doomed to irreparable inconsistencies.

6 Significance test and testing background hypo-

theses

We show the problematic of the Fisherian significance test so that it misses to count
as an alternative for the likelihood test. There was already a problem with tests for
background hypotheses, which can be tested only by significance tests. This completes
the critique against objectivist test theories as the background hypotheses have to be
checked by other methods rather than statistical tests so that a further rationality gap
arises that finally shows the theoretical weakness of an explication of probability on a
closed objectivist basis with an FQT meaning.

6.1 Significance test – measure of discrepancy

Gigerenzer (2004) identifies early traces of statistical inference in the first significance
test by Arbuthnot (1710) in his proof of a divine order of gender. Arbuthnot’s argument
is cited from Borovcnik and Kapadia (2014, p. 18)

“The probability is very small that for 80 successive years more males than females are born,

so the hypothesis that the gender proportion is equal has to be rejected as it would produce an

observation with a probability of (1/2)80 ≈ 10−25. Therefore, the alternative hypothesis must

hold (probability for boys greater than for girls), which Arbuthnot interpreted as an expression

of a divine order.”

Once we decide the limit for moral probability, any hypothesis that attributes to the
observed event a probability lower than this limit, is considered to be probabilistically
disproved. Hereby, moral probability means the idea to neglect all probabilities lower
than this threshold. This idea has occurred at several places in the emergence of
probability. For example, Borel (1943) argued to equate small probabilities to zero:
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for a human being, the threshold is 10−6, in the history of earth, it is 10−15 and, for
the cosmos, it is 10−50. Such arguments illustrate how tight the concept of probability
connects to considerations of statistical inference.

There are two perceptions about the significance test, which has been introduced
by R. A. Fisher (1925): i. The significance test is a degenerate NP test, as it does not
take into account alternative hypotheses. ii. The significance test provides a decision
scheme analogous to the indirect proof in mathematics. Rather than providing a counter
example that disproves the null hypothesis, the observation is considered as a relative,
a statistical “disprove” of the null if it has a small significance level α (later referred
to as p value). In the Fisherian tradition, the significance level α was interpreted
as a discrepancy measure. If the probability α of the “observation” conditional to a
hypothesis h0 is small,

P (“observation”|h0) = α, (6.1)

then this is a statistical argument against the null hypothesis. The significance level
was ordinally scaled and void of a frequentist interpretation. For a small number α, the
result of the decision to reject the null can now be interpreted in the following way (α
was usually compared to the thresholds 0.05, 0.01. 0.001): Either a “rare” event has
occurred (as a qualitative statement) or h0 is wrong. Fisher himself did not pre-specify
α before the data is gathered. He interpreted the value of α as a direct property of the
hypothesis under scrutiny. As an NP test, the significance level can be interpreted in
the long run; yet, it is a degenerate NP test as it has been derived without reference to
alternative hypotheses whence Neyman’s rationality principle (to maximise the power
among those tests that have a common, pre-fixed size) cannot be applied.

We give an example for illustrating the two approaches.

Example 6.1. If two variables are jointly normally distributed (the background hypo-
thesis), then we can find an optimal NP test for the null hypothesis h0 of correlation
= 0 (which then is equivalent to the independence of the two variables) against the
alternative hypothesis of correlation not equal to 0. For this problem, it is possible to
find an NP test with size α = 0.05. This setting allows also for a Fisherian significance
test. If an observation occurs that lies in the rejection region of the NP test, then
the Fisherian significance level would be less than 0.05 so that we might come to the
conclusion to reject the null hypothesis (correlation = 0).

Yet, in the Fisherian framework, one would not pre-specify the 0.05, as is done in
the NP sense where the value for the size has to be fixed before the data is gathered.
In both cases, the test can be perceived as test of independence against dependence
(within the background hypothesis). Consider the following variant of the situation.
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Example 6.2. The background hypothesis of the joint normal distribution is now miss-
ing. Yet, we can at least assume the data to stem from a random sample of the joint
distribution. We have to test the null hypothesis of no correlation. As there is no
way to find and order all hypotheses about the dependence of the two variables (and
the consequences upon the correlation coefficient between them), there can be no NP
optimal test as we cannot optimise the rejection region to maximise the power. Yet, in
the Fisherian framework, we can just reorder the data (permute the y values as they
are attached to an x value). If the variables are independent, then any reordering has
the same justification. From all possible ways to reorder, we calculate the correlation
coefficient so that we have a theoretical distribution of the correlation coefficient un-
der the null hypothesis of independence. From this null distribution, it is possible to
determine the significance level of the initial data and base a Fisher test on it.

There has been a fierce debate between Fisher and Neyman about their approaches.
Fisher criticised Neyman’s primitive FQT views about probability, while Neyman denied
the rationality of the significance test as it lacks a possibility to optimise the test against
alternative hypotheses. Fisher insisted that his discrepancy measure (later called p
value) provides a valid support argument for the null hypothesis under scrutiny. Con-
sistently, Fisher elaborated his ideas on fiducial probabilities, for which he was fiercely
criticised by the community of statisticians (see SAVAGE, 1976). Recently, there are
endeavours to revive his approach of fiducial probabilities, which are some kind of sub-
stitute for “prior” probabilities for hypotheses yet explicitly avoiding to use an SJT
meaning. If in the applications of statistics a likelihood approach does not lead to
satisfactory solutions, a careful analysis of the problem would be tried using a prior
distribution, which is formally adapted to the problem under scrutiny (in the sense of
a mathematical model and not as an expression of an SJT probability a priori).

From a perspective of analytical science, the significance test does not count as a
suitable method for testing hypotheses as it neglects alternative hypotheses. This has a
severe consequence upon the way to test background hypotheses about the type of dis-
tribution, or the independence of data. The critique against the method is widespread:
“The illogic of statistical inference” (GUTTMAN, 1985), “A review of an old and con-
tinuing controversy” (NICKERSON, 2000), “An investigation of the false discovery rate
and the misinterpretation of p values” (COLQUHOUN, 2014), are only a few examples
that illustrate the critique against the significance test. Many voices ask for a ban or a
replacement of significance tests (HUNTER, 1997; MULAIK, RAJU, & HARSHMAN,
1997; GORARD & WHITE, 2017). Lane (1980) summarises the controversy about the
nature of Fisher’s fiducial probability and Jeffrey’s logical probability – both intended
to rescue an objective meaning for the inference based on Bayes’ theorem. Seidenfeld
(1979) concludes that reconstructions of the fiducial argument lead either to a restric-
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ted validity or to logical inconsistencies. In this way, the fiducial programme ends up
with the same problems as Objective Bayesians (JEFFREYS, 1948), namely that it is
not possible to represent total ignorance on prior probabilities in Bayes’ theorem by
statistical information.

6.2 “Tests” for background hypotheses

In any statistical test, both the family of distributions that describe the generation of the
data and the independence of single data are crucial pre-assumptions. All further test
results seemingly depend on these background hypotheses. We illustrate the resulting
problematic, as we can apply neither likelihood tests nor NP tests to such hypotheses.
That clearly decreases the rationality of testing such hypotheses and – at the same time
– decreases the rationality of objectivist methods for statistical inference, as they have
to rely on the prior validity of the background hypotheses without a proper method to
test them.

We can of course test for the assumption of normality (or any other distribution) by,
e.g., a Kolmogorov-Smirnov test; likewise, we can test for independence. In both cases,
the tests are significance tests in Fisher’s sense without a possibility for integrating
alternative hypotheses. There may be some plausibility considerations whether we
would fail to reject some other distribution if we failed to reject a normal distribution,
to get some idea about the “power” of such a test. Yet, we cannot order the many
distributions that may also serve as a suitable model for the variable under scrutiny
so that power considerations to maximise the power in the NP sense are not available.
Worse in case of testing independence against any kind of dependence, as there is no
way to “order” various possibilities for describing dependence between the variables.

That means, for testing background hypotheses, we have to rely on significance
tests, which are not seen as appropriate from the analytical-science perspective; in
fact, such a test is often replaced by (subjective) arguments in favour of some models.
Simplicity of the used model may here be one of the stronger arguments. Overall, a
pure objectivist theory for statistical inference finally breaks down under the problem of
testing background hypotheses. The specific test theories that have been investigated
(NP, likelihood test theory, etc.) are not suitable for that purpose. In this light,
we can no longer pursue Stegmüller’s criterion of avoiding a subjectivation of science.
Statistical inference shifts the connotation of probability towards an SJT connotation,
be it open and formally checkable or be it hidden in private decisions by individual
researchers or the community as a whole. The new challenge is, to make such decisions
transparent and open to critique so that they can be improved to corroborate the used
methods and develop a viable connotation of the concepts.
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7 Conclusions

We investigated the project of an objectivist explication of probability. In the analytic
theory of science, an important task is to find a suitable justification for an intuitive idea
of a pre-concept. This justification is usually done by introducing a theory, in which it
is possible to re-construct as many properties as possible for this pre-concept so that
this theory allows a general approach for describing a wide spectrum of phenomena
from reality and to provide potential solutions for real-world problems. The way, how
one succeeds to build up this theory, the rationality, the reasonableness of required
definitions, and the plausibility of additional criteria that are necessary to complete
this theory, are finally a justification for the initial intuitive idea. This intuitive idea
will also impregnate the phenomena to be described and will serve as a link between
the real world and the theory, in which one may find solutions for problems.

There is an axiomatic justification for the SJT conception of probability, which
may be described as a personal judgement about the degree of belief, which has been
worked out by de Finetti (1937); this approach includes a complete inductive logic,
i.e., it provides the statistical inference within the theory of probability, mainly by the
Bayesian theorem. The axiomatic justification for the FQT conception of probabil-
ity describes probability as linked to something like (idealised) relative frequencies in
experiments that are repeatable under the same circumstances (including the independ-
ence requirement). Yet, this approach does not provide a theory for statistical inference
within the undisputed mathematical theory of probability.

Starting point for our considerations were the approaches of Hacking and Stegmüller,
who try to find an explication of probability on an objectivistic basis; be it a simple FQT
conception, or the propensity conception of Popper (1959). That is, they refer to an
objectivistic framework and try to find a satisfactory solution for statistical inference,
which then in a loop, influences the probability concept. Both of them find arguments
against other objectivist approaches for statistical inference and present favourable
arguments for the likelihood test theory. Based on likelihood support and the likelihood
principle they find the solution that combines direct inference (single case) and the
judgement of hypotheses in the light of data (inverse inference). A solution, which they
do not abandon even if they themselves find severe objections against the rationality
of the likelihood test theory.

The paradox of Kerridge or the similar problem of Hacking, which we discussed
in Section 5.3, reveal crucial flaws of the approach and shed doubt on the rationality
of it. This would cause serious problems with the FQT conception, as an explication
of probability based on FQT definitely fails. Yet, they do not leave this position, as
the only solution left – to acknowledge the subjectivist conception of probability – is
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unacceptable for them, as this would lead to a subjectivation of the natural sciences
where an FQT probability is essential.

We have used the same paradoxes to criticise the objectivist conception per se, as
we see – by a formal use of (SJT) prior probabilities – why the likelihood argument has
to fail. We do not advocate switching to a closed SJT position of probability, however.
We just seek for a transparent use of probability and probability models, which always
have a genuine subjectivist component. A reduction of the concept of probability
either to an objectivist or to a subjectivist conception would distort the concept as it
has emerged in parallel due to the tension between both connotations. The debate in
the foundations – led by the paradigm of science, especially the objective paradigm of
physics – forbade accepting the SJT approach for probability and accepted an approach
towards statistical inference with many rationality problems. It even accepted Popper’s
(1962/1935) view that one can only continuously test statistical hypotheses so that they
would be prone to be rejected. That method would thus overall enrich the proportion
of correct hypotheses by a method of corroboration. With no aim and no possibility to
make any further statements about a specific hypothesis under scrutiny. The methods
of statistical inference based on FQT are highly disputed up to date.

As for the didactical implications of our analysis, we regard didactic as a discipline
that combines knowledge and insights from mathematics and any other science, which
could support teaching and understanding; we may list here (cognitive) psychology, so-
ciology, philosophy of science, and many others. Different from empirical investigations
in how methods would be effective in actual teaching and which factors would influence
it most, the hermeneutic method elaborates on a topic by gathering arguments, facts,
and analogies to identify problems, to compare approaches towards the situation, or to
analyse how an approach frames the situation.

An open consideration of the peculiarities of the methods around Bayes’ formula and
a transparent account for subjectivist and objectivist parts of the concept of probability
would highlight its mutual character. Probability lives from a complementarity of both
constituents, it is an entity that has an empirical counterpart and it is an entity that
forms our thought about randomness so strongly that we now can understand why
de Finetti (1974) stated “PROBABILITY DOES NOT EXIST. IT IS ONLY IN OUR
MIND”. Even though this is an extreme statement of an extreme adherent of the SJT
conception, the citation should mark the one end of probability, which – so far – is less
known and less well accepted in comparison to the FQT view. It is the complementarity
between these diverse meanings that shapes our thought about randomness and related
mathematical models.

The present paper focuses on the ways a frequentist interpretation of probability can
be used to develop suitable methods for statistical inference. The discussion about the
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controversy in the foundations revealed that a frequentist conception is highly prone
to dispute, as a justification of an FQT meaning failed from a rational perspective
when the explication of probability integrates statistical inference. This gives rise to
investigating refined approaches towards teaching probability and statistics from a wider
perspective on the range of meanings of probability apart from FQT. Carranza and
Kuzniak (2008) provide evidence about shortcomings of educational approaches that
ignore SJT aspects of probability, which lead to far-reaching misconceptions not only
about the use of Bayes’ formula but in the perception of probabilities at large. Anyway,
we have argued that the concept of probability emerges from a mixture between APT,
FQT, and SJT meanings, which are not easy to separate. The shift in connotation of
probability towards a biased FQT meaning decreases the scope of probability or the
quality of applications. Probability is a complementary concept, which falls apart if
we reduce it to one view. Steinbring (1991) speaks of the “theoretical character of
probability” in this connection.
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[44] PEARSON, E. S. The selected papers of E. S. Pearson. Berkeley: University of
California Press, 1966.

[45] POPPER, K. R. The propensity interpretation of probability. British Journal of
the Philosophy of Science, v. 10, p. 25-42, 1959.

[46] POPPER, K. R. Logic of scientific discovery (English version of Logik der
Forschung). London: Routledge, 1962/1935.

[47] SAVAGE, L. J. The foundation of statistical inference. London: Methuen, 1962.

[48] SAVAGE, L. J. On rereading R. A. Fisher. The Annals of Statistics, v. 4, p. 441-
500, 1976.

[49] SEIDENFELD, T. Philosophical problems of statistical inference – Learning from
R. A. Fisher. Dordrecht: D. Reidel, 1979.

ReviSeM, Ano 2021, No. 3, 42–76 75



Borovcnik, M.
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