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Abstract

Brazilian energy matrix is essentially based on hydroelectricity with long transmission
lines, allowing the exchange of energy produced in all regions of the country, the incre-
ased demand for energy and the search for lower costs, the application of more efficient
and robust methods to minimize generation and transmission losses is necessary, since
these are functions of generated and transmitted power, respectively. The purpose
of this work is to implement primal dual interior point method for the predispatch
of a hydroelectric system, with partial replacement of the Newton method with the
quasi-Newton method in order to compute the system Jacobian matrix and reduce the
computational costs of the iterations arising from approximations of the inverses of the
Hessian matrix. This means that, in order to obtain a search direction, only a matrix
vector product is necessary, which is much more efficient, for example, than the Newton
method, in which a linear system has to be solved at each iteration. Computational
results prove the efficiency of the approach used.
Keywords: linear programming, interior point methods, initial point.

1 Introduction

Brazilian electric system is unique in the world. Its flexibility even enables the
demand for energy to grow before the offer. This flexibility results from the system
being unique and its large shared hydraulic reserves, with interconnected reservoirs for
the storage of energy. Furthermore, it has one of the lowest operation and environmental
costs in the world [22].

In Brazil, energy production is predominantly hydraulic, with thermal generation
having a supplementary function during peaks in demand. Use of the great majority

ReviSeM, Ano 2023, No. 1, 63–80 63



Carvalho, S.; Oliveira, A.

of generating plants water reservoirs is planned in order to get the most out of the
pluviometric diversity in the different existing catchment areas. Thus, the possibility
of interconnecting catchment areas located in different geographic regions provides ma-
jor energy gains for the Brazilian system, because, accordingly, it is possible to take
advantage of the different seasons and pluviometric levels.

In the predispatch of the hydroelectric systems, the generating units have a target
to meet on certain days, established by long-term planning, and, as this planning serves
as an operational directive, it requires a more detailed representation of the operation
of the system, in which hydroelectric and thermoelectric plants are represented at the
turbine/generator level and all the relevant restrictions of the generation and trans-
mission system must be taken into account. An aggravating factor is that most of the
hydroelectric generation units are located far from the main consumer centers; conse-
quently, an extensive transmission network is necessary in order to interconnect the
most distant energy generation and consumption points, resulting in significant losses
in these networks.

Predispatch provides the energy targets for each day and thus, in order to fulfill
them, it is necessary to represent the electric power system for each of the 24 hours of
the day, detailing the operational conditions of the system. Optimizing this system is a
fairly complex task, and thus to try to fulfill the necessities and criteria that the hydro
resources possess, it is necessary to apply methods that minimize costs at all stages of
generation, as well as transmission losses.

The methodology used to develop this work is the primal-dual interior point method,
because it presents satisfactory results for optimal power flow problems [20], [4]. This
methodology comprises the application of the Newton method to the optimality con-
dition of the problem, thus aiming at solution of non-linear systems; however, solving
the linear systems that arise from this approach is, computationally, a more expensive
task than an interior point method [11].

The contribution of this work is the implementation of interior point methods for the
predispatch of the hydroelectric system, with the replacement of the Newton method
with the Broyden’s quasi-Newton method in order to compute the Jacobian matrix of
the system, aimed at the low computational costs of the iterations arising from the
approximations of the inverses of the Hessian matrix. This means that, in order to
obtain the search direction, only a matrix vector product is necessary, which is much
more efficient, for example, than the Newton method, in which a linear system has to
be solved at each iteration. Application of this methodology to predispatch problems
is innovative.
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2 Quadratic programming

The interest in the study of the minimization of quadratic functions resides in the
large number of applications that fall into this format. This type of problem is consi-
dered one of the simplest in the non-linear optimization area [7]. It often appears as a
sub-problem to assist in the solution of more complex non-linear problems.

A quadratic programming problem may be formulated as follows [8]:

min 1
2
xTGx+ cTx

s.t Ax ≤ b
x ≥ 0.

(2.1)

where G is a symmetric square matrix (n × n), c is an n-dimensional vector, whose
components are the coefficients of the linear terms in the objective function. If G = 0,
the objective function is linear, thus linear programming can be seen as a special case
of quadratic programming.

In this work, the objective function is quadratic with separable variables and the
procedure for developing the primal-dual-type interior-point methods for quadratic pro-
gramming is essentially the same as that used in linear programming.

2.1 Interior Point Methods

The interior-point methods attempt to find an optimal solution for a linear program-
ming problems by moving through the interior of the positive orthant [24, 25]. This
comprises the application of the Newton method to the optimality conditions of the
problem [25, 15, 16].

Consider:

F (x, y, z) =

 b− Ax
c− ATy − z

XZe

 , (2.2)

where X and Z are diagonal matrices, formed by the x and z vectors, respectively, and
e is a vector with all the elements equal to one. Consider the residuals:

F (x, y, z) = −

 rp
rd
ra

 . (2.3)

From an initial point (x0, y0, z0), the point (x1, y1, z1), is computed in the following
manner:
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(x1, y1, z1) = (x0, y0, z0)−
[
J(x0, y0, z0)

]−1
F (x0, y0, z0), (2.4)

where the Jacobian is given by:

J(x, y, z) =

 A 0 0
0 AT I
Z 0 X

 . (2.5)

In general (xk+1, yk+1, zk+1) = (xk, yk, zk) + dk, is defined, where in the dk step is
given by:

dk =

 A 0 0
0 AT I
Zk 0 Xk

−1  rkp
rkd
rka

 =

 dx
dy
dz

 . (2.6)

In order to ensure that the point remain interior, this step is multiplied by a constant
αk, called “step size”. Thus, after applying the Newton method to the optimality
conditions, we get:

(xk+1, yk+1, zk+1) = (xk, yk, zk) + αk(dxk, dyk, dzk). (2.7)

The primal and dual steps, respectively, are computed as follows:

αp = min {−(xi)
k/(dxi)

k; dxk
i < 0} αd = min {−(zi)

k/(dzi)
k; dzki < 0}, (2.8)

where in α1
k = min{αk

p, α
k
d} , results in αk = min {ταk

1, 1} where τ ∈ (0, 1) for linear
programming. In practice, using different steps for primal and dual variables, we get
better computational results.

3 The Predispatch Problem

Predispatch is a short-term operational problem that is intended to define the best
alternatives for hydroelectric generation, transmission of energy and thermal generation
for one-week, or even single-day, horizons. The aim is to fulfill demand and achieve
energy production targets, defined in long-term planning problem.

Flow restrictions may be divided into blocks that are repeated over each time in-
terval, representing the electric system in these intervals. Thus, we get an independent
formulation of Kirchhoff’s laws for each interval. In the network flow model, power
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flows enable consideration of transmission limits as restrictions; transmission losses are
characterized as a performance criterion [18].

3.1 Static Model

The power system problem optimization of generation and transmission costs with m
bars, n lines and g generators can be modeled using the following formula [10]:

min α
1

2
[fTRf ] + β

1

2
[pTQp+ cTp],

s.t Af = Ep− d, Xf = 0,

fmin ≤ f ≤ fmax, pmin ≤ p ≤ pmax,

where:

� f ∈ Rn×1 represents the active power flow;

� p ∈ Rg×1 represents the active power generation;

� Q ∈ Rg×g represents the quadratic component of the generation cost;

� R ∈ Rn×n represents the diagonal matrix of line resistance;

� d ∈ Rm×1 represents the active power demand;

� X ∈ Rn−m+1×n represents the line reactance matrix;

� E represents a matrix of order m × g with each column containing exactly one
element equal to 1 and the other elements null;

� A ∈ Rm×n represents the incidence matrix of the transmission network;

� c ∈ Rg×1 represents the linear component of the generation cost;

� fmax, fmin ∈ Rn×1, pmax and pmin ∈ Rg×1 are the flow and generating limits for
active power, respectively;

� α and β are weights of the objectives to be minimized;

� q ∈ Rg×1 represents the energy generation target established by long-term plan-
ning.

For this model, both components of the objective function are quadratic with sepa-
rable variables. The first component represents the value of transmission losses. The
second component characterizes the generation cost of the plants [23].
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3.2 Dynamic Model

The static model results in representation of the problem for a single point in time.
The dynamic model is intended to find the best generation alternatives for t-interval
time horizons. Thus, we get t-subproblems with the same structure as the static model,
coupled with additional constraints.

In other words, the predispatch problem is a dynamic flow model of optimal power,
which can be represented in the following manner[20, 21]:

min
α

2

t∑
k=1

[(fk)TRkfk] +
β

2

t∑
k=1

[(pk)TQkpk + cTpk], (3.1)

where
Akfk − Epk = −dk, ∀ k = 1, ..., t,

Xkfk = 0, ∀ k = 1, ..., t,
fmin ≤ fk ≤ fmax, ∀ k = 1, ..., t,
pmin ≤ pk ≤ pmax, ∀ k = 1, ..., t,

t∑
k=1

pk = q,

(3.2)

where q ∈ Rg×1 represents the energy generation target established by long-term plan-
ning.

Optimality conditions for problem [3.2, Subsection 3.2] may be decomposed into
primal feasibility, dual feasibility and complementarity constraints, detailed below.

� Primal feasibility

Bf̃k − Êp̃k = d̂k, ∀ k = 1, ..., t, (3.3)

f̃k + sk
f̃
= f̃max, ∀ k = 1, ..., t, (3.4)

p̃k + sp̃ = p̃max, ∀ k = 1, ..., t (3.5)
t∑

k=1

p̃k = q̃, (3.6)

(f̃k, sk
f̃
, p̃, skp̃) ≥ 0. (3.7)

� Dual feasibility

ReviSeM, Ano 2023, No. 1, 63–80 68



Carvalho, S.; Oliveira, A.

BTyk
f̃
− wk

f̃
−Rf̃k + zk

f̃
= cf̃ , ∀ k = 1, ..., t, (3.8)

−ÊTyk
f̃
− wk

p̃ + ya −Qp̃k + zkp̃ = cp̃, ∀ k = 1, ..., t, (3.9)

(zk
f̃
, wk

f̃
, zkp̃ , w

k
p̃) ≥ 0, yk

f̃
, ya free. (3.10)

� Complementarity conditions

F̃ kZk
f̃
e = 0, (3.11)

Sk
f̃
W k

f̃
e = 0, (3.12)

P̃ kZk
p̃ e = 0, (3.13)

Sk
p̃W

k
p̃ e = 0. (3.14)

(3.15)

3.3 Newton Method

Applying the Newton method to optimality conditions, we get:

Jd = r, (3.16)

where

J =


M1 0 0 . . . 0
0 M2 0 . . . 0
...

. . .
...

...
0 0 . . . Mt

I1p̃ I2p̃ . . . I tp̃

,

each Mk corresponds to the following matrix:
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B −Ê 0 0 0 0 0 0 0 0
I 0 I 0 0 0 0 0 0 0
0 I 0 I 0 0 0 0 0 0

−R 0 0 0 BT −I I 0 0 0

0 −Q 0 0 −ÊT 0 0 −I I I

Zk
f̃

0 0 0 0 0 F̃ k 0 0 0

0 0 W k
f̃

0 0 Sk
f̃

0 0 0 0

0 Zk
p̃ 0 0 0 0 0 0 P̃ k 0

0 0 0 W k
p̃ 0 0 0 Sk

p̃ 0 0


,

whose directions are

dT =[
(df̃k)T (dp̃k)T (dsk

f̃
)T (dskp̃)

T (dyk
f̃
)T (dwk

f̃
)T (dzk

f̃
)T (dwk

p̃)
T (dzkp̃ )

T (dya)
T
]
,

and r represents the residual vector:

r1 = d̂k −Bf̃k + Êp̃k, (3.17)

r2 = f̃max − f̃k − sk
f̃
, (3.18)

rp = p̃max − p̃k − skp̃, (3.19)

ry = cf̃ −BTyk
f̃
+ wk

f̃
+Rf̃k − zk

f̃
, (3.20)

rg = cp̃ + ÊTyk
f̃
+ wk

p̃ − ya +Qp̃k − zkp̃ , (3.21)

rzf = µe− F̃ kZk
f̃
e, (3.22)

rwf = µe− Sk
f̃
W k

f̃
e, (3.23)

rzp = µe− P̃ kZk
p̃ e, (3.24)

rwp = µe− Sk
p̃W

k
p̃ e, (3.25)

rm = q̃ −
t∑

k=1

p̃k. (3.26)

Thus, we get the following equation system formed by the Newton directions [3]:
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Bdf̃k − Êdp̃k = r1,

df̃k + dsk
f̃
= rf ,

dp̃k + dskp̃ = rp,

BTdyk
f̃
− dwk

f̃
−Rdf̃k + dzk

f̃
= ry

−ÊTdyk
f̃
− dwk

p̃ + dya −Qdp̃k + dzkp̃ = rg,

F̃ kdzk
f̃
+ Zk

f̃
df̃k = rzf ,

Sk
f̃
dwk

f̃
+Wf̃ds

k
f̃
= rwf ,

P̃ kdzkp̃ + Zk
pdp̃

k = rzp,

Sk
p̃dw

k
p̃ +W k

p̃ ds
k
p̃ = rwp,

t∑
k=1

dp̃k = rm.

(3.27)

This system may be considerably reduced by replacing the variables and obtaining
the system [3.28, Subsection 3.3] to be solved [3].

t∑
k=1

[(Dk
p̃)

−1 − (Dk
p̃)

−1ÊT−1

Ê(Dk
p̃)

−1]dya = rm +
t∑

k=1

(Dk
p̃)

−1[rb + ÊTM−1r], (3.28)

whose direct solution requires great computation effort, because we lose sparsity and
M = B(Dk

f̃
)−1BT +Dk has a dimension equal to the number of lines plus one (n + 1)

and dya has the number of generators as the dimension. For example, for the Brazilian
system with 3,511 bars, studied in this work, the matrix M has the dimension (4, 238×
4, 238) and dya is the vector with dimension (265× 1). Therefore, the direct approach
for solving this system in large scale problems should be discarded [5].

It is important to emphasize that the solution for the system [3.28, Section 3.3] is
the stage that requires the greatest computation effort to solve the optimal power flow
problem, modeled as described in this work. The objective comprises an exploration of
alternatives for solving this problem in the best manner possible. This consideration is
even more critical in the approach to the pre-dispatch problem, because there are many
matrices that must be decomposed in the system to be solved, as many as the number
of intervals defined on the study horizon (in this article, there will be 24 intervals,
representing the hours of the day).
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4 Quasi-Newton Methods

The interior point methods are robust and widely-used methods for solving large-
scale problems, because they present fast convergence. Accordingly, it is intuitive to
think of the replacement of the Newton Method with the Quasi-Newton Method, where
an approximation to the Jacobian matrix is used instead of making an exact computa-
tion as in the Newton method.

The Newton method is excellent for solving non-linear systems; however, it involves
a high computational cost, and so a relatively satisfactory method, but with a lower
computational cost, is an interesting proposition. Most of the quasi-Newton methods
were developed with this purpose [17, 14]. The purpose is to generate a xk sequence,
where:

Bkdk = −F (xk). (4.1)

Where:

xk+1 = xk + dk. (4.2)

A very highly-regarded quasi-Newton method is the secant method [12], where the
approximation matrices for the Jacobian matrix are chosen in a manner that satisfies
the secant equation [4, Section 4]. The BFGS method developed by Broyden - Feltcher
- Goldfarb - Shanno used in this work is a quasi-Newton method, often used to solve
non-linear systems, whose formula for Bk+1 comprises a correction of rank one on the
matrix Bk; thus Bk+1 is the orthogonal projection of Bk in the set of matrices that
satisfy the secant equation. Given Bk, a new approximation of Bk+1 to Jk+1 is given
by [11]:

Bk+1dk = F (xk+1)− F (xk), (4.3)

Bk+1 = Bk +
[(F (xk+1)− F (xk))Bksk)]s

T
k

sTk sk
, (4.4)

where sk = xk+1 − xk.
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For the computation of the Hessian matrix Hk+1 = B−1
k+1 we will use the Sherman-

Morrison-Woodbury formula [9].

Hk+1 = Hk +
(sk −Hk(F (xk+1)− F (xk))s

T
kHk

sTkH(F (xk+1)− F (xk))
. (4.5)

The Hessian matrix for predispatch problems is will conditioned, and may result
in convergence problems. In order to remedy this difficulty every time this matrix is
very ill conditioned, the Newton step will be performed in this iteration; i.e., the usual
interior-point method. In practice this procedure works as a corrective measure, and
for large-scale problems, it is necessary to apply it once or twice at the most.

5 Computational Results

Implementation was developed in MATLAB R2018, with a precision of 10−6, in order
to consider the optimality conditions of the problem satisfied. The following equipment
was used: IMAC retina 5k 2019, Processing Speed 3,4 GHz intel core i5 Quad-Core
with RAM 8 GB DDR4, MacOs Ventura 13.1(22C65).

The networks on which the tests were performed include the IEEE30 system, shown
in Figure [1, Section 5], and the IEEE118 system, representing the United States
Midwest. The Brazilian South-Southeast-Midwest system, with 1,654 (SSECO1654)
bars, and the Real Brazilian Interconntected System, comprising 1,993 bars.
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Figura 1: IEEE System
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The tests performed use the initial point shown in the Equation [5.6, Section 5].
This presented satisfactory results in previous experiments [4, 2, 19, 20]. The initial
Jacobian matrix is computed using the Newton method.

f 0 =
fmax

2
, (5.1)

p0 =
pmax

2
, (5.2)

y01 = y02 = y03 = y04 = 0, (5.3)

z01 = w0
1 = (R + I)e, (5.4)

z02 = w0
2 = e, (5.5)

z03 = w0
3 = e. (5.6)

Tabela 1: Comparison Classic MPI and Quasi-Newton MPI
Classic MPI Quasi-Newton MPI

Systems Time(s) Iteration Time(s) Iteration
IEEE30 0.1896 3 fails to converge -
IEEE118 1.9524 6 fails to converge -
SSECO1654 40.1014 14 67.2379 16
BRASIL1993 44.2235 9 63.1505 9

In Table 1, there is a comparison between the classic primal-dual interior point
methods; i.e., with the use of only the Newton Method for solving the non-linear sys-
tem with the primal-dual interior point method with a simple direct replacement by
the Broyden’s quasi-Newton method for solving the system. In this table, it can be per-
ceived that the classic interior-point method is more efficient for all the systems, when
compared to the method that uses the quasi-Newton; this is due to the fact that the
when the inverse Jacobian matrix is computed using the Sherman-Morrison-Woodbury
formula, it was ascertained that it is extremely poorly conditioned, and it is close to
being singular at several timepoints, thus resulting in a convergence problem.

In order to remedy this difficulty, a preconditioner is applied in the Jd = r system;
i.e., we will apply techniques that consist of modifying the original system to an equi-
valent one, whose matrix is better conditioned, and the new system will have better
spectral properties, such as eigenvalues close to the unit.

Methodology used has been applied with great success in [6] was suggested by Man-
teuffel [13], with a hybrid approach [1]. In this method, a global increment in the
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Tabela 2: Comparison Classic MPI and Preconditioned Quasi-Newton MPI
Classic MPI Preconditioned Quasi-Newton MPI

Systems Time(s) Iteration Time(s) Iteration
IEEE30 0.1896 3 0.1619 3
IEEE118 1.9524 6 1.4366 5
SSECO1654 40.1014 14 36.3244 16
BRASIL1993 44.2235 9 33.9870 9

coefficient matrix diagonal is made. Thus, incomplete factorization is applied in the
J = J + α.diag(J) matrix in which α Ãs positive number and diag(J) denotes the
diagonal part of the Jacobian matrix. The computation of αi = 6 · 10−4 · 2i with
i = 1, 2, ..., 15 , in which i is the number of factorization restarts.

Every time the Jacobian matrix has a very high condition number, an interior point
iteration would be performed with the Newton method, and in this case, it would be
used as a corrective measure.

Observe in Table 2 that, with the preconditioner, all the systems converge more
quickly than when compared to classic interior-point methods. For the IEEE118 and
SSECO1654 systems with the pre-conditioning application, the number of iterations
is higher, and the explanation is that the linear system solution is approximated, but
the computational cost is still lower, because it is no longer necessary to solve a linear
system, but rather by simply performing a matrix vector product.

The incomplete LU preconditioner with the hybrid approach obtained satisfactory
results for the IEEE30 problems and the actual Brazilian system; however, the ap-
proach was not sufficient to obtain convergence with the IEEE118 and the Brazilian
South-Southeast and Midwest systems. In these cases, it was also necessary to per-
form a classic interior-point method iteration; i.e., when obtaining the Jacobian matrix
using the Newton method, whenever the matrix became poorly conditioned. For the
IEEE118 system, this corrective measure was necessary a single time and, for the Brazi-
lian system, it was necessary to perform the measure twice. Analyzing the convergence,
it was noted that these corrective measures were always necessary close to an optimal
solution.

In Figure [2, Section 5], it is possible to ascertain that, for the Brazilian interconnec-
ted system, all the generators worked at their limits at peak times to fulfill the energy
demand in the system. Similar graphs were obtained for other systems, thus showing
that the energy dispatch during the 24-hour period analyzed was coherent.
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Figura 2: Dispatch of the generators of the Brazilian interconnected system - BRA-
SIL1993
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6 Conclusions

Brazilian energy matrix is essentially based on hydroelectricity with long transmis-
sion lines, allowing the exchange of energy procuded in all regions of the country, the
increased demand for energy and the search for lower costs, the application of more ef-
ficient and robust methods to minimize generation and transmission losses is necessary,
since these are functions of generated and transmitted power, respectively.

In this paper, the primal-dual interior point methods were used to solve a predis-
patch problem in a hydrothermal system. The contribution of this research is to solve
this problem by replacing the Jacobian matrix, obtained by the Newton method, by an
approximation, in order to obtain a reduction in computational costs.

One of the main concerns when implementing interior-point methods is in the solu-
tion of the Newton equation systems, present at each iteration of this method, and this
is the step that consumes most of the processing time, and so it should be executed
efficiently. The fundamental idea of the quasi-Newton methods is to use an iterative
process for an approximation to the Jacobian matrix, instead of performing an exact
computation, such as in the Newton method. In this work, Broyden’s quasi-Newton
method was used for approximation to the Jacobian matrix at interior point methods
and the Sherman-Morrison-Woodbury was used to compute the Hessian matrix, and it
was ascertained that it is extremely poorly conditioned, resulting in convergence pro-
blems for the method. To solve this problem, a preconditioner was also implemented,
in order to obtain a more stable Hessian matrix.

The incomplete LU preconditioner with a hybrid approach obtained satisfactory
results for the IEEE30 problems and the actual Brazilian system; however, the approach
was sufficient to obtain convergence for the IEEE118 systems and the Brazilian system
in the South-Southeast and Midwest systems. For these cases, it was also necessary to
perform an iteration of classic interior point methods; i.e., when obtaining the Jacobian
matrix using the Newton method, whenever the matrix became poorly conditioned. For
the IEEE118 system, this corrective measure was necessary a single time and, for the
Brazilian system, it was necessary twice.

The computational tests showed that the approach used is quite efficient in order
to solve the optimal power flow problems. The results obtained demonstrated the
adequacy of the methodology, both in terms of numerical aspects and in computational
time.
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