
Revista Sergipana de Matemática e Educação Matemática
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Abstract

We present in this work dynamic experiences that explore interesting geometric loci,
such as Miquel points, Fermat points, Nagel points, and Gergonne points. In these
dynamic approaches, accessible through external links to pages on the GeoGebra plat-
form, readers can change parameters through sliders and observe, as the parameters
vary, whether the introduced changes satisfy the hypotheses that define the geometric
loci. Additionally, we utilize GeoGebra to create two-dimensional geometric figures.
In addition to providing definitions, we offer proofs of the theorems that establish the
uniqueness of the covered geometric loci. Some of the proofs introduced in this work
involve the concept of isotomic cevians, which needs more coverage in the existing litera-
ture. In summary, GeoGebra is an invaluable tool for constructing dynamic approaches
to explore geometric loci. It empowers students to test hypotheses both before and
after formal demonstrations. One concludes that GeoGebra is a versatile software that
can be effectively integrated into geometry education at all levels.

Keywords: Isotomic cevians, Miquel’s point, Fermat’s points, Gergonne’s point, Nagel’s
point.

Resumo

Apresentamos neste trabalho experiências dinâmicas que exploram lugares geométricos
interessantes, como os pontos de Miquel, Fermat, Nagel e Gergonne. Nas abordagens
dinâmicas, constrúıdas em páginas da plataforma GeoGebra e acessadas por links ex-
ternos, o leitor pode alterar parâmetros por meio de controles deslizantes e observar,

ReviSeM, Ano 2024, No. 1, 01–21 1



Nós, Sano, Silva

com o movimento, se as alterações introduzidas atendem às hipóteses que definem os
lugares geométricos. Também usamos o GeoGebra para construir figuras bidimension-
ais. Além das definições, apresentamos as demonstrações dos teoremas que garantem a
unicidade do lugar geométrico abordado. Algumas das provas fornecidas usam noções
de cevianas isotômicas, sendo que a literatura relacionada a esses conceitos é escassa.
Conclúımos que o GeoGebra é uma excelente ferramenta para a construção de aborda-
gens dinâmicas de lugares geométricos, pois permite que os estudantes testem hipóteses
antes ou depois de demonstrações formais. Dessa forma, o GeoGebra é um software
que pode ser explorado pelo professor de geometria em todos os ńıveis de ensino.

Palavras-chave: Cevianas isotômicas, ponto de Miquel, ponto de Fermat, ponto de
Gergonne, ponto de Nagel.

1 Introduction

In geometry, a geometric locus is a set of points that satisfy a specific property.
Usually, a geometric shape or figure can be defined as a geometric locus.

Definition 1.1. Given a property P relative to a set of points in R2 or R3, the geometric
locus of the points that possess property P is the subset L that satisfies the conditions:

1. every point in L possesses property P ;

2. every point that possesses property P belongs to L.

Some elementary geometric loci, such as the circumference, the perpendicular bisec-
tor of a line segment, and the angle bisector, illustrated in Figure 1 1, are easily grasped
and visualized.

For more complex geometric loci, it can be a non-trivial task to visualize and char-
acterize the set of points that satisfy the property. In any case, one can use digital
technologies to visualize and explore the given geometrical situation. As articulated by
Arcavi [1, p. 216]:

Such “technologies” might develop visual means to better “see” mathemat-
ical concepts and ideas. Mathematics, as a human and cultural creation
dealing with objects and entities quite different from physical phenomena
(like planets or blood cells), relies heavily (possibly much more than math-
ematicians would be willing to admit) on visualization in its different forms
and at different levels, far beyond the obviously visual field of geometry, and
spatial visualization.

1All figures were produced by the authors with GeoGebra.
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(a) (b) (c)

Figure 1: Geometric loci: (a) circumference Γ; (b) bisector m of the line segment AB; (c)
bisector OP of the angle ∠AOB.

In the present work, we carry out the program of leveraging digital tools for the
exploration of selected interesting geometric loci:

• The geometric constructions explored are the Miquel, Fermat, Gergonne, and
Nagel points. The common theme of these constructions is that they are given
by the unique solution of a specific concurrency situation; the Fermat point is
also a solution to a significant minimization problem (see Section 3); in the proof
of the theorem regarding the Nagel point, we use concepts related to isotomic
cevians [20].

• The tool of choice for the present paper is GeoGebra software [8]. This tool
allows for geometric constructions to be dynamically created and modified inter-
actively. It enables merging elements such as figures, text, and equations, which
are modified whenever a parameter is altered, keeping up with changes made when
dragging or moving a point, line, or slider control. With a simple user interface,
GeoGebra allows for constructions to be made through a menu of options, such
as move, point, line, perpendicular line, polygon, circle, ellipse, angle, reflection,
slider control, and move screen, among others.

We employ GeoGebra to build dynamic experiences with the geometric theorems
stating the solution of the concurrency problems studied. The dynamic experiences
were constructed using GeoGebra pages, which can be directly accessed from the text
and interactively manipulated through the application. By adjusting parameters on the
GeoGebra page, readers can assess the hypotheses and theses of each theorem that has
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been selected. For example, Figure 2 demonstrates two different positions of triangle
ABC, achieved by relocating its vertices.

Figure 2: Dynamic movement of the vertices of triangle ABC.

Each link in the dynamic approaches has a title, an active file that can be modified,
and a text at the bottom that cites the theorem and informs the parameters that can be
changed. Thus, the reader can check that when all the hypotheses are met, the thesis
is verified; when one of the hypotheses is not met, one of the parameters changes, and
thus the theorem is invalid. This case is visually evident as the constructions no longer
illustrate the proposed thesis.

Related Work: Several studies in the literature support the use of GeoGebra for showing
geometric properties [15, 17, 18, 19]. For example, Nós, Sano, and Lago [14] employed
GeoGebra to establish properties related to challenging geometric problems [16]. Lago
and Nós [12] used the application to create dynamic animations illustrating geometric
loci. Botana [7] harnessed GeoGebra for an interactive approach to generate geometric
loci, and Gómez-Chacón and Escribano [9, 10] researched using this software in teaching
geometric loci to pre-service teachers.

The spirit of our study is similar to the works of Alexander Bogomolny (1948-2018),
an American mathematician born in Russia. Bogomolny’s works, which are available
on the internet and some of them we have used as references [2, 3, 4, 5, 6], have formal
proofs in the body of the text and an external manipulable link where the reader can
dynamically move some points and understand how the parameters are modified or
how the thesis is proven true through the presented construction. Like Bogomolny, we
offer the formal proof of the geometric theorem and then guide the reader to a dynamic
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experience in which the hypotheses can be modified and the visible results of these
changes observed.

2 Miquel’s point

Theorem 2.1, or Miquel’s theorem, was proposed by a French mathematician, Au-
guste Miquel (1816-1851). This theorem establishes Miquel’s point, a geometric locus
defined by the intersection of three circumferences that pass through the vertices of a
triangle. Miquel’s theorem can be generalized for n circumferences [21], and there is a
three-dimensional version for the two-dimensional case with n = 3 [11].

Theorem 2.1 (Miquel’s theorem). Let ABC be a triangle. If A′, B′ and C ′ are points
marked on the sides BC, AC, and AB, respectively (or on their extensions), then the
three circles through any vertex of triangle ABC and the two marked points on the
adjacent sides intersect at one point M .

Proof. Let γ and Γ be the two circles through the points A, B′, C ′ and B, A′, C ′,
respectively. They intersect at the point C ′ and at another point we call M ; see Figure
3.

Figure 3: Miquel’s M point.

Let ∠AC ′M = θ, so ∠BC ′M = 180◦− θ. The angles ∠AC ′M and ∠AB′M and the
angles ∠BC ′M and ∠BA′M are supplementary because the quadrilateralsAC ′MB′ and
BC ′MA′ are inscribed in γ and Γ, respectively. Then, we have that ∠AB′M = 180◦−θ
and ∠BA′M = θ. Thus ∠CB′M = θ and ∠CA′M = 180◦ − θ.
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Hence the angles ∠CB′M and ∠CA′M are supplementary, which shows that there
is a circle Λ passing through the vertices of the quadrilateral CB′MA′. Therefore the
three circles γ, Γ, and Λ intersect at point M .

Point M from Theorem 2.1 is called Miquel’s point.

Remark 2.2. The proof of Theorem 2.1 considers only the case where the points A′, B′,
and C ′ are marked on the sides of triangle ABC.

We constructed the dynamic visualization of Miquel’s theorem in GeoGebra and
made it available at the link

https://www.geogebra.org/m/gbhdzk6t.
We can move points A, B, C, A′, B′, and C ′ dynamically in the GeoGebra App.

3 Fermat’s points

The first Fermat point (or simply Fermat point or Torricelli point) arises from a
problem proposed by the French mathematician Pierre de Fermat (1601-1665) to the
Italian mathematician and physicist Evangelista Torricelli (1608-1647), inventor of the
barometer. In a letter, Fermat challenged Torricelli to find a solution to the minimiza-
tion problem whose resolution is the result of Theorem 3.1 below. Torricelli presented
several solutions to the problem proposed by Fermat. In one of these solutions, he
observed that the circumferences circumscribed to the equilateral triangles constructed
externally on the sides of the triangle are concurrent at a point. We present the proof
of Theorem 3.1 based on Napoleon’s theorem [2, 18].

Theorem 3.1. There exists a point such that the sum of its distances to the vertices
of a triangle is minimal.

Proof. Let ABC be a triangle. Consider a point F inside the triangle ABC and the
triangle A′BF ′ obtained from rotation by 60◦ of triangle ABF around B, as shown in
Figure 4.

Thus FA ≡ A′F ′. By construction, the triangle BFF ′ is equilateral, and so FB ≡
F ′F . Then we have

FA+ FB + FC ≡ A′F ′ + F ′F + FC. (3.1)

Since point A′ is obtained by rotation of A around B, the position of A′ does not
depend on F . Furthermore, we have

FA+ FB + FC ≥ A′C.
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Figure 4: Triangles ABC, ABF , and A′BF ′.

Hence the sum (3.1) is minimal if and only if F ∈ A′C. For that F , we have
∠BFA′ = 60◦ (if the rotation were made around point A, we would have ∠AFA′ = 60◦).

Now, constructing equilateral triangles on the sides of triangle ABC, we obtain the
triangles ABA′, ACC ′ and BCB′ and the lines A′C, AB′, and BC ′, see Figure 5.

Figure 5: Fermat’s point: the intersection between the lines AB′, BC ′, and CA′.

By a similar reasoning to the one given earlier, we have that the point F that
minimizes the sum FA + FB + FC also lies in AB′ and BC ′. Napoleon’s theorem
guarantees that the three lines A′C, AB′ and BC ′ intersect at point F , the angle
between them is equal to 120◦ and AB′ ≡ BC ′ ≡ A′C = FA + FB + FC. Therefore,
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point F is unique and lies in the intersection of the lines passing through the vertices of
triangle ABC and the opposite vertices of equilateral triangles constructed on the sides
of triangle ABC. In case one of the angles of the triangle ABC is greater than or equal
to 120◦, point F will be the vertex corresponding to the greater triangle angle.

Point F from Theorem 3.1 is called Fermat’s point.
We constructed the dynamic visualization of Fermat’s point in GeoGebra and made

it available at the link
https://www.geogebra.org/m/smhageyu.

We can move points A, B, C, and M dynamically in the GeoGebra App.

3.1 Lighthouse at Fermat’s points

Now that the Fermat point has been defined, one can further study its properties. A
stunning property is given in Theorem 3.2 below, which provides a relationship between
the Fermat point and the collinearity of points on the sides (or their extensions) of a
triangle - as shown in Figure 6. Bogomolny [3] refers to this theorem as “a lighthouse
at Fermat points”.

Figure 6: Lighthouse at Fermat’s F point.

Theorem 3.2. Let ABC be a triangle, F its Fermat point, and A1, B1, and C1 are
points in the lines BC, AC, and AB, respectively, such that ∠A1FC1 ≡ ∠B1FC1 = 60◦.
Then the points A1, B1, and C1 are collinear.

ReviSeM, Ano 2024, No. 1, 01–21 8
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Proof. Let ABC be a triangle, the equilateral triangles AA′B, BB′C, and CC ′A con-
structed respectively on the side AB, BC, and AC of triangle ABC and the Fermat
point F ∈ AB′ ∩ A′C ∩ BC ′. Let DEB be the homothetic image of the equilateral
triangle BBC with homothetic center at point A. Thus D ∈ AB, E ∈ AB′, B1 ∈ AC,
DB1 ∥ BC, EB1 ∥ B′C and DE ∥ BB′ as shown Figure 7.

Figure 7: Triangles ABC and DEB1, the Fermat point F , and points A1, B1, and C1.

Let us denote by P the point of intersection of A1B1 and AB. We will show that
P ≡ C1, so A1, B1, and C1 are collinear.

Given that DB1 ∥ BA1, the triangles B1DP and A1BP are similar. Hence

B1D

A1B
=

B1P

A1P
. (3.2)

Since the triangle DEB1 is equilateral and DB1 ∥ BA1, it follows that

∠(
−−→
B1E,

−−→
A1B) ≡ ∠(

−→
EF,

−→
BF ) = 120◦.

So we have that ∠FEB1 ≡ ∠FBA1. By construction, the angle ∠B1FA1 is equal to
120◦, and by the property of Fermat point, the angle ∠AFB is equal to 120◦. This way,
∠A1FB ≡ ∠B1FE and triangles B1EF and A1BF are similar. Thus we get that

B1E

A1B
=

FB1

FA1

. (3.3)
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Using the relations (3.2) and (3.3) and the fact that B1D ≡ B1E, we obtain

B1P

A1P
=

FB1

FA1

. (3.4)

From (3.4), we conclude by the internal bisector theorem that FP is the bisector of
the angle ∠B1FA1. Therefore P ≡ C1.

We constructed the dynamic visualization of the lighthouse at Fermat points in
GeoGebra and made it available at the link

https://www.geogebra.org/m/ractsk7u.
We can move points A, B, C, and B1 dynamically in the GeoGebra App.

4 Isotomic cevians

A cevian is a line segment that connects one of the vertices of a triangle to a point
on the opposite side or its extension. The point of intersection between a cevian and
the side or its extension of the triangle is known as the foot of the cevian. When the
feet of two cevians, originating from the same vertex of a triangle, exhibit symmetry
concerning the midpoint of the side opposite the shared vertex, these cevians are referred
to as isotomic. Figure 8 illustrates the AA1 and AA2 cevians, whose feet are symmetric
about the midpoint M of the side BC, opposite the angle ∠BAC.

Figure 8: Isotomic cevians AA1 and AA2.

Let now AA1, BB1, and CC1 be cevians of triangle ABC, with A1, B1, and C1

denoting the respective footpoints of these cevians, and MA, MB, and MC representing
the midpoints of the sides BC, AC, and AB, correspondingly. We can establish that
A2, B2, and C2 are the symmetric points relative to A1, B1, and C1 concerning MA,
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MB, and MC. Consequently, the cevians AA2, BB2, and CC2 are isotomic with the
cevians AA1, BB1, and CC1. Suppose the cevians AA1, BB1, and CC1 intersect at a
point P , and their isotomic cevians AA2, BB2, and CC2 intersect at a point P ′. In that
case, these two points of intersection are termed isotomic conjugate points, as depicted
in Figure 9.

Figure 9: Isotomic conjugate points P and P ′.

From the isotomic cevians AA1 and AA2, BB1 and BB2, and CC1 and CC2, it
follows that

A1B = −A2C, (4.1)

A2B = −A1C, (4.2)

B1C = −B2A, (4.3)

B2C = −B1A, (4.4)

C1A = −C2B, (4.5)

C2A = −C1B. (4.6)

We present the proof of Theorem 4.1, which establishes a property related to iso-
tomic cevians. The proof is based on Sortais and Sortais [20].

Theorem 4.1. Isotomic cevians to three concurrent or parallel cevians are also con-
current or parallel.

Proof. Let be the triangle ABC, the cevians AA1, BB1, and CC1 with A1 ∈ BC,
B1 ∈ AC, and C1 ∈ AB, the points A2, B2, and C2 symmetrical to the points A1,
B1, and C1 concerning MA, MB and MC midpoints of segments BC, AC and AB,
respectively, see Figure 9.
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1. Suppose that the cevians AA1, BB1, and CC1 are parallel. Let us show that
A1 /∈ {B,C}. It is assumed, for instance, that A1 = B. We have that AA1 ∥ AB.
Since CC1 ∥ AA1, it follows that CC1 ∥ AB. So CC1 ∩ AB = ∅ given that
C /∈ AB. However, this contradicts the hypothesis because CC1 ∩ AB = {C1}.
Likewise, we can show that B1 /∈ {A,C} and C1 /∈ {A,B}.
As the cevians AA1, BB1, and CC1 are parallel, we have by Ceva’s theorem that

A1B

A1C
· B1C

B1A
· C1A

C1B
= −1. (4.7)

Substituting (4.1)-(4.6) in (4.7) we get that

A2C

A2B
· B2A

B2C
· C2B

C2A
= −1. (4.8)

From (4.8), it follows by Ceva’s theorem that the cevians AA2, BB2, and CC2,
isotomic to the cevians AA1, BB1, and CC1, respectively, are concurrent or par-
allel.

2. Suppose the cevians AA1, BB1, and CC1 are concurrent at point P1. Thus we
have three possibilities to analyze.

a) P1 /∈ (AB ∪BC ∪ CA).

In this case, the same reasoning used previously allows deducing relation
(4.8) from relation (4.7). Therefore, the AA2, BB2, and CC2 cevians are
concurrent or parallel.

b) P1 ∈ (AB ∪BC ∪ CA)− {A,B,C}.
Suppose, for example, that P1 ∈ AB − {A,B}. We then have

AA1 ≡ AP1 ⇒ A1 = B;

BB1 ≡ BP1 ⇒ B1 = A;

CC1 ≡ CP1 ⇒ P1 = C1.

The relations (4.1)-(4.6) guarantee that A2 ≡ C and B2 ≡ C. Furthermore,
C2 is symmetric to P1. So AA2 ∩ BB2 ∩ CC2 = AC ∩ BC ∩ CC2 = {C}.

ReviSeM, Ano 2024, No. 1, 01–21 12



Nós, Sano, Silva

Figure 10: Triangle ABC with A ≡ B1, B ≡ A1, C ≡ A2 ≡ B2, and P1 ≡ C1.

Thus, the cevians AA2, BB2, and CC2, isotomic to the cevians AA1, BB1,
and CC1, respectively, are concurrent in C, see Figure 10.

Likewise, if P1 ∈ BC − {B,C}, then the cevians AA2, BB2, and CC2 are
concurrent in A, and if P1 ∈ AC − {A,C}, then the cevians AA2, BB2, and
CC2 are concurrent in B.

c) P1 ∈ {A,B,C}.
Suppose, for example, that P1 ≡ A. Hence

BB1 ≡ BP1 ≡ BA ⇒ B1 ≡ A;

CC1 ≡ CP1 ≡ CA ⇒ C1 ≡ A.

In this way, the cevians AA1, BB1, and CC1 are concurrent in A, see Figure
11.

Figure 11: Triangle ABC with A ≡ P1 ≡ B1 ≡ C1, B ≡ C2, and C ≡ B2.

So AA1 ̸≡ AB and AA1 ̸≡ AC. Thereby A1 ∈ BC − {B,C} and
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B1 ≡ A ⇒ B2 ≡ C;

C1 ≡ A ⇒ C2 ≡ B.

Since A2 is symmetric to A1 and A1 ∈ BC − {B,C}, we get that A2 ∈
BC−{B,C}. Hence BB2∩CC2∩AA2 = BC∩BC∩AA2 = {A2}. Therefore,
the cevians AA2, BB2, and CC2 have a common point A2 ∈ BC − {B,C}.
That is, they are concurrent.

We obtain a similar result by assuming that P1 ≡ B or P1 ≡ C.

We constructed the dynamic visualization of isotomic cevians in GeoGebra and
made it available at the link

https://www.geogebra.org/m/mh42fvgy.
We can move points A, B, C, A2, B1, and C2 dynamically in the GeoGebra App.

5 Gergonne’s point

The locus in a triangle defined by the point of intersection of the cevians where the
feet are the tangency points of the incircle of the triangle is called the Gergonne point,
named in honor of the French mathematician Joseph Diez Gergonne (1771-1859).

Definition 5.1 (Gergonne’s point). Let Γ be the incircle of the triangle ABC and the
points H, I, and J of the intersection of Γ with the sides BC, AC, and AB of triangle
ABC, respectively. Point G, intersection of the AH, BI, and CJ segments, is the
Gergonne point.

Figure 12 illustrates the Gergonne point. The proof of Theorem 5.2 follows Sortais
and Sortais [20].

Theorem 5.2. The Gergonne point exists and is unique.

Proof. Let the triangle ABC circumscribed to the circle Γ and the points H, I, and
J at which Γ touches the sides BC, AC, and AB of triangle ABC, respectively; see
Figure 12.
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Figure 12: Gergonne’s G point.

First, we will prove that the segments AH and BI are not parallel. Suppose that
AH ∥ BI. By Thales’ theorem, we have

HB

HC
=

AI

AC
. (5.1)

But H ∈ BC − {B,C} and I ∈ AC − {A,C}. Thus

HB

HC
< 0 and

AI

AC
> 0. (5.2)

However, inequalities (5.2) contradict equality (5.1). Therefore the lines AH and
BI are concurrent.

Now, we will show that the segments AH,BI, and CJ are concurrent at a point.
Since the circle Γ is inscribed in the triangle ABC, we have that the sides of ABC

are perpendicular to the radius of Γ at the points of tangency, see Figure 13.
Let O be the center of Γ. Hence OI ≡ OJ and triangles AOI and AOJ are

congruent. From this, it follows that AJ ≡ AI. Analogously, BH ≡ BJ and CH ≡ CI.
Considering AJ = x, BH = y, and CH = z, we get

BH

CH
· CI

AI
· AJ
BJ

=
(
−y

z

)
·
(
−z

x

)
·
(
−x

y

)
= −1. (5.3)

From (5.3) and Ceva’s theorem, it follows that the lines containing the segments
AH,BI, and CJ are concurrent or parallel. As we have already shown that they are
not parallel, the lines are concurrent at the Gergonne point.
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Figure 13: Triangle ABC, inscribed circumference Γ, and intersection points H, I, and J .

We constructed the dynamic visualization of the Gergonne point in GeoGebra and
made it available at the link

https://www.geogebra.org/m/r2euvfx9.
We can move points A, B, and C dynamically in the GeoGebra App.

6 Nagel’s point

The locus in a triangle defined by the point of intersection of the cevians that join the
vertices of the triangle to the points of tangency of the excircles on the opposite sides
is called the Nagel point, named in honor of the German geometer Christian Heinrich
von Nagel (1803-1882).

Definition 6.1 (Nagel’s point). Let ΓA, ΓB, and ΓC be the excircles of the triangle
ABC and D, E, and F the points of tangency of these circles to the sides BC, AC,
and AB of triangle ABC, respectively. Cevians AD, BE, and CF intersects at a single
point called Nagel’s point.

Figure 14 illustrates Gergonne and Nagel points.
The Gergonne and Nagel points are examples of isotomic conjugate points. The

following result - Theorem 6.2, whose proof can be found in Neto [13], will be needed
to demonstrate the existence and uniqueness of the Nagel point.

Theorem 6.2. If ABC is any triangle, point Q is the incenter of ABC, point IB is the
excenter of ABC relative to the side AC, and M is the point of intersection between
the circle that circumscribes ABC and the segment QIB, then M is the midpoint of the
arc AC which does not contain B and MA ≡ MC ≡ MQ ≡ MIB.
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Figure 14: Isotomic conjugate points: the Gergonne point G and the Nagel point N .

Theorem 6.3. The Nagel point exists and is unique.

Proof. Let ABC be a triangle, γ the inscribed circle with center Q, Γ the circumscribed
circle with center O, ΓB the excircle relative to the side AC with center IB, S the
midpoint of AC, the point I = γ∩AC, the point E = ΓB∩AC, the point M = Γ∩QIB
and the bisector r of AC, see Figure 15.

By Theorem 6.2, we have that MA ≡ MC ≡ MQ ≡ MIB. The points Q, A, IB,
and C are vertices of an inscriptible quadrilateral of diameter QIB, whose midpoint
M is the center of the circumscribed circle. This property is valid if triangle ABC is
not isosceles with base AC. If triangle ABC is isosceles with base AC, as shown in
Figure 16, then the points Q, IB, S, and O are colinear, and the line that passes through
them coincides with the bisector of AC. In this case, the center of the circumcircle of
quadrilateral AQCIB is also the midpoint M of the segment QIB.

Thus, we have that the orthogonal projections of the points Q, IB, and M on the
segment AC are, respectively, the points I, E, and S. Since M is the midpoint of QIB,
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Figure 15: Triangle ABC and three circumferences: inscribed γ, circumscribed Γ, and ex-
inscribed ΓB regarding the side AC.

then the points I and E are symmetric concerning the point S. This holds for the three
ex-inscribed circles and the three sides of triangle ABC.

In this way, we have in Figure 14 that D and H, I and E, and J and F are isotomic
conjugate points. Hence, AD, BE, and CF are, respectively, the isotomic cevians of
AH, BI, and CJ , which concur at point N . This point is interior to triangle ABC
since H ∈ BC and I ∈ AC. Therefore, point N exists and is unique.

We constructed the dynamic visualization of the Nagel point in GeoGebra and made
it available at the link

https://www.geogebra.org/m/zqnbanpd.
We can move points A, B, and C dynamically in the GeoGebra App.
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Figure 16: Isosceles triangle ABC and three circumferences: inscribed γ, circumscribed Γ,
and ex-inscribed ΓB regarding the side AC.

7 Concluding remarks

In this study, we have provided proofs and dynamic visualizations of geometric loci,
such as Miquel, Fermat, Gergonne, and Nagel points. Throughout our investigations,
we made use of the freely available application GeoGebra.

We aimed to create a resource for students and educators in mathematics-teaching
degree programs, offering active and engaging strategies for understanding theorems
associated with geometric loci. A possible future development along the lines of the
present work can be the inclusion of descriptive guides in the dynamic approaches.
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