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Resumo

O Teorema de Goldman-Tucker detém uma importância significativa na otimização
linear, pois garante a existência de uma solução estritamente complementar. Duas
razões destacam a sua relevância: em primeiro lugar, os métodos de pontos interio-
res com barreira logaŕıtmica convergem para uma solução estritamente complemen-
tar, cuja existência é garantida por este teorema. Em segundo lugar, o Teorema de
Goldman-Tucker, juntamente com a condição de complementariedade do sistema KKT
(Karush–Kuhn–Tucker), motivou o desenvolvimento de precondicionadores eficientes
para as iterações finais dos métodos de pontos interiores, como o precondicionador Se-
parador. Enquanto textos acadêmicos sobre otimização linear geralmente apresentam
este resultado e suas consequências apenas para o problema de otimização linear na
forma canônica ou forma padrão, o objetivo deste artigo é elucidar de maneira acu-
rada o teorema para o problema de otimização linear canalizado, acompanhado por
uma prova detalhada. Além disso, é apresentado um resultado teórico que utiliza este
teorema para estabelecer a convergência do trajetória central para uma solução estrita-
mente complementar, juntamente com um exemplo ilustrativo de aplicação de ambos
resultados teóricos.

Palavras-chave: Método de pontos interiores; Trajetória central; Solução estritamente
complementar.
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Abstract

The Goldman-Tucker theorem holds significant importance in linear optimization, as
it ensures the existence of a strictly complementary solution. Two reasons underscore
its relevance: firstly, logarithmic barrier interior point methods converge towards a
strictly complementary solution, whose existence is warranted by this theorem. Secon-
dly, the Goldman-Tucker theorem, coupled with the complementary slackness condition
of the KKT (Karush–Kuhn–Tucker) system, has motived the development of efficient
preconditioners for the final iterations of interior point methods, such as the Splitting
preconditioner. Academic texts of linear optimization present this result as well as
its consequences only for the canonical and standard form. This paper aims to accu-
rately elucidate this theorem for the two-side constraints linear optimization problem
with a detailed demonstration. Additionally, a theoretical result that uses this theorem
to show that the central path converges to a strictly complementary solution and an
example of application of both theoretical results are presented.

Keywords: Interior point method; Central path; Strictly complementary solution.

1 Introduction

In linear optimization, first-order conditions, also known as the Karush-Kuhn-Tucker
conditions, are necessary and sufficient for achieving optimality [4]. Among these,
the complementarity condition stands out because the Interior Point method with the
logarithmic barrier uses its own perturbation to propose a rather efficient algorithm.
Moreover, this condition motivated the construction of preconditioners, such as the
Splitting preconditioner [5].

The Goldman-Tucker theorem guarantees the existence of at least one strictly com-
plementary optimal solution, see [2], [1] and [3]. When using the Interior Point method
to solve a linear programming problem, it is possible to show that this method converges
to a strictly complementary solution, see [3] [6].

Academic texts in the field typically describe and demonstrate the main results of
linear optimization problems only in the context of canonical or standard forms. Howe-
ver, there exist problems with two-sided constraints, and few works explicitly describe
their fundamental properties. Therefore, there is a need to present, demonstrate, and
apply the Goldman-Tucker theorem to this type of linear programming problem.

This work is based on Chapter 2 of the book [7] and Chapter 3 of the book [6],
where they deal with the duality theory and optimality conditions for the standard and
canonical linear programming problem.
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In Section 2, we will introduce the necessary definitions pertaining to the Goldman-
Tucker theorem within the context of linear optimization problems with two-sided cons-
traints. Moving on to Section 3, we provide a detailed proof of the main result of this
paper, Theorem 3.1. In addition we demonstrate an application of the Goldman-Tucker
theorem to establish the convergence of the central path towards a strictly complemen-
tary solution, as demonstrated in Theorem 3.3. In Example 1, we apply the results
obtained from both Theorem 3.1 and Theorem 3.3. Finally, in Section 4, we present
our conclusions.

2 Mathematical preliminaries

We establish some results about duality theory and optimality conditions for the
two-side constrains linear optimization problem (P) and its dual problem (D):

(P)


min cTx

s. t. Ax = b

x+ s = u

(x, s) ≥ 0

(D)


max bTy − uTw

s. t. ATy − w + z = c

(w, z) ≥ 0

y ∈ Rm.

, (2.1)

where x, s, w, z ∈ Rn. We assume that A ∈ Rm×n has full row rank and both (P) and
(D) have solutions.

The sets of feasible points of (P) and (D) are:

F(P ) =
{
(x, s) ∈ R2n

+ | Ax = b, x+ s = u
}

and

F(D) =
{
(y, w, z) | y ∈ Rm, (w, z) ∈ R2n

+ , ATy − w + z = c
}
,

respectively.
Using the KKT conditions, (x∗, s∗) is the optimal solution of the problem (P) given

in (2.1) if, and only if, exist y∗ ∈ Rm, z∗, w∗ ∈ Rn
+ that satisfy the following equations:

Ax =b, x ≥ 0; (2.2)

x+ s =u, s ≥ 0; (2.3)

ATy − w + z =c, w, z ≥ 0; (2.4)

XZe =0; (2.5)

WSe =0, (2.6)

where e = (1, . . . , 1) ∈ Rn, X,Z,W and S are diagonal matrices defined as X =
diag(x), Z = diag(z), W = diag(w) and S = diag(s), respectively.
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The sets of solutions of (P) and (D) are defined as:

P∗ =
{
(x∗, s∗) ∈ F(P )|cTx∗ ≤ cTx, for all (x, s) ∈ F(P )

}
and

D∗ =
{
(y∗, w∗, z∗) ∈ F(D)|bTy∗ − uTw∗ ≥ bTy − uTw, for (y, w, z) ∈ F(D)

}
,

respectively.
Equations (2.5) and (2.6) are called complementary slackness conditions. That

is, every optimal solution (x∗, s∗) ∈ P∗, (y∗, w∗, z∗) ∈ D∗ satisfies X∗Z∗e = 0 and
S∗W ∗e = 0.

Definition 2.1 (Strict complementary slackness condition). The solutions (x∗, s∗) ∈
P∗ and (y∗, w∗, z∗) ∈ D∗ satisfy the strict complementary slackness condition when
x∗ + z∗ > 0 and s∗ + w∗ > 0.

From equations (2.5) and (2.6) of the KKT system, we know that

x∗
i = 0 and/or z∗i = 0 for all i = 1, 2, . . . , n;

w∗
i = 0 and/or s∗i = 0 for i = 1, 2, . . . , n,

where (x∗, s∗) ∈ P∗ and (y∗, w∗, z∗) ∈ D∗.
The next definitions are used in the Goldman-Tucker result for the primal-dual pair

of the two-side constrains linear optimization problem given by (2.1).

Definition 2.2.

• For (x∗, s∗) ∈ P∗, we define B1(x
∗) = {i : x∗

i > 0} and

B1 =
⋃

(x∗,s∗)∈P∗

B1(x
∗). (2.7)

• For (y∗, w∗, z∗) ∈ D∗, we define N1(z
∗) = {i : z∗i > 0} and

N1 =
⋃

(y∗,w∗,z∗)∈D∗

N1(z
∗). (2.8)

• For (x∗, s∗) ∈ P∗ we define B2(s
∗) = {i : s∗i > 0}, and

B2 =
⋃

(x∗,s∗)∈P ∗

B2(s
∗). (2.9)
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• For (y∗, w∗, z∗) ∈ D∗, we define N2(w
∗) = {i : w∗

i > 0}, and

N2 =
⋃

(y∗,w∗,z∗)∈D∗

N2(w
∗). (2.10)

The next result, Theorem 3.1, is the Goldman-Tucker theorem for the primal-dual
pair given by (2.1). The proof is based on Theorem 3.3.5 (Strict Complementarity
Theorem for the Standard pair) of the book [6] increasing the notations of sets: B1, B2,
N1 and N2, given by the Definition 2.2 in order to clarify all the details on the proof of
this important theorem.

3 Main Results

3.1 The Goldman-Tucker Theorem for two-side constraints li-
near optimization problem

Theorem 3.1. Consider the sets established in Definition 2.2, then:

Bi ∪Ni = {1, 2, . . . , n} and Bi ∩Ni = ∅ for i = 1, 2. (3.1)

Consequently, there are (x∗, s∗) ∈ P∗ and (y∗, w∗, z∗) ∈ D∗ such that: x∗ + z∗ > 0
and s∗ + w∗ > 0.

Proof. For i = 1, 2, we define the sets: N i = {1, 2, . . . , n}\Bi. We use this definition in
order to prove: N i = Ni.

• Case i = 1

Let i ∈ N1, this implies that there is z∗ ∈ Rn
+ such that (y∗, w∗, z∗) ∈ D∗ with

z∗i > 0. Using the complementary slackness conditions given by (2.5), x∗
i = 0 for

all x∗ ∈ Rn
+ with (x∗, s∗) ∈ P∗. Thus, i /∈ B1, this means that i ∈ N 1. Therefore,

N1 ⊆ N 1.

In order to prove N 1 ⊆ N1, we prove the existence of (y∗, w∗, z∗) ∈ D∗ with
z∗N 1

> 0, consequently N 1 = N1(z
∗) ⊆ N1.

Let “k” be the optimal value of the primal-dual pair given in (2.1). We define the
vector eT = (0B1 , 1N̄1

)T and considering the following primal-dual pair of linear
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programming problem:

(P
′
)



min −eTx

s. t. Ax = b

−cTx− t = −k

x+ s = u

(x, s, t) ≥ 0

(D
′
)


max bTy − kt− uTw

s. t. ATy − tc− w + z = −e

(w, z, t) ≥ 0

y ∈ Rm.

(3.2)

We observe that (x, s, t) is a feasible point of (P
′
) if, and only if, (x, s) ∈ P∗. In

fact, (x, s, t) ∈ F(P
′
) if, and only if, Ax = b, x + s = u and (x, s) ≥ 0. Then,

(x, s) ∈ F(P ) and therefore cTx ≥ k. Moreover, cTx ≤ cTx + t = k, so cTx = k.
Thus, (x, s) ∈ P∗. Now, (x, s) ∈ P∗ implies that (x, s, t) ∈ F(P

′
), it is true

trivially.

We observe that the optimal value of the problems (3.2) is 0. In fact, let (x, s, t) ∈
F(P

′
), then (x, s) ∈ P∗. Note that i ∈ N 1 if, and only if, i /∈ B1, if, and only if,

x∗
i = 0 for all x∗ with (x∗, s∗) ∈ P∗. Hence, the objective function of (P

′
) is zero

for every feasible point. Consequently, the optimal value of (P
′
) and (D

′
) is zero.

Let (ȳ, w̄, z̄) ∈ D∗ and (ŷ, t̂, ŵ, ẑ) ∈ (D′
)∗, these points are used in order to define:

y∗ =
ȳ + ŷ

1 + t̂
, w∗ =

w̄ + ŵ

1 + t̂
and z∗ =

z̄ + ẑ + ē

1 + t̂
. (3.3)

Next, we prove that (y∗, w∗, z∗) defined by (3.3) is a solution of the problem (D)
given in (2.1). Moreover, z∗N̄1

> 0. In fact, from (ȳ, w̄, z̄) ∈ F(D), (ŷ, t̂, ŵ, ẑ) ∈
F(D′) and (3.3), we have that w∗ ≥ 0, z∗ ≥ 0 and zN 1

> 0. Now, we prove that
(y∗, w∗, z∗) ∈ F(D) :

ATy∗ − w∗ + z∗ =
1

1 + t̂

(
AT ȳ + AT ŷ − w̄ − ŵ + ē+ z̄ + ẑ

)
=

1

1 + t̂

(
AT ȳ − w̄ + z̄

)
+

1

1 + t̂

(
AT ŷ − ŵ + ẑ − ct̂

)
+

+
1

1 + t̂

(
ē+ ct̂

)
=

1

1 + t̂
c− 1

1 + t̂
ē+

1

1 + t̂

(
ē+ ct̂

)
= c

1 + t̂

1 + t̂
= c .
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Moreover, observe that,

bTy∗ − uTw∗ =bT
(
ȳ + ŷ

1 + t̂

)
− uT

(
w̄ + ŵ

1 + t̂

)
=

1

1 + t̂

(
bT ȳ − uT w̄) + ((bT ŷ − uT ŵ − kt̂) + kt̂)

)
=

1

1 + t̂

(
k + (0 + kt̂)

)
= k .

Hence, (y∗, w∗, z∗) given by (3.3) is a solution for the problem (D) with z∗N 1
> 0.

Then, N 1 = N1(z
∗) ⊆ N1 and therefore, N1 = N 1.

• Case i = 2

Let i ∈ N2, this implies that there is w∗ ∈ Rn
+ such that (y∗, w∗, z∗) ∈ D∗ with

w∗
i > 0. By the complementary slackness condition in the equation (2.6), s∗i = 0

for every s∗ ∈ Rn
+ with (x∗, s∗) ∈ P∗. Thus i /∈ B2, or equivalently, i ∈ N 2.

Therefore, N2 ⊆ N 2.

In order to verify the other inclusion, we prove the existence of the vector (y∗, w∗, z∗) ∈
D∗ such that wN 2

> 0. Hence N 2 = N2(w
∗) ⊆ N2.

Let “k” be the optimal value of primal-dual pair given by (2.1). We define the
vector êT = (0B2 , 1N̄2

)T , considering the following primal-dual pair of linear pro-
gramming problem:

(P
′′
)



min êT s

s. t. Ax = b

−cTx− t = −k

x+ s = u

(x, s, t) ≥ 0

(D
′′
)



max bTy − kt− uTw

s. t. ATy − ct− w + z = 0

(z, t) ≥ 0

w ≥ ê

y ∈ Rm.

(3.4)

We note that (x, s, t) is a feasible point of (P
′′
) if, and only if, (x, s) ∈ P∗. In

fact, (x, s, t) ∈ F(P
′′
) if, and only if, Ax = b, x + s = u and (x, s) ≥ 0. Thus,

(x, s) ∈ F(P ) and cTx ≥ k. In addition, cTx ≤ cTx + t = k, so cTx = k,
consequently, (x, s) ∈ P∗. Now, (x, s) ∈ P∗ implies that (x, s, t) ∈ F(P

′′
), it is

true trivially.

Now, we will prove that the optimal value of the problems (3.4) is zero. Let
(x, s, t) ∈ F(P

′
), this is, (x, s) ∈ P∗. Observe i ∈ N 2 if, and only if, i /∈ B2 if, and

only if, s∗i = 0 for all s∗ with (x∗, s∗) ∈ P∗. Hence, the objective function of (P
′′
)
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is zero for every feasible point. Consequently, the optimal value of (P
′′
) and (D

′′
)

is zero.

Let (ȳ, w̄, z̄) ∈ D∗ and (ŷ, t̂, ŵ, ẑ) ∈ (D
′′
)∗, these points are used in order to define:

y∗ =
ȳ + ŷ

1 + t̂
, w∗ =

w̄ + ŵ

1 + t̂
and z∗ =

z̄ + ẑ

1 + t̂
. (3.5)

Next, we prove that the point (y∗, w∗, z∗) defined by (3.5) is a solution of (D)
with w∗

N̄2
> 0. In fact, from (ȳ, w̄, z̄) ∈ F(D), (ŷ, t̂, ŵ, ẑ) ∈ F(D′′) and ŵ ≥ ê, we

have w∗ ≥ 0 and z∗ ≥ 0. In particular, w∗
N 2

> 0. Note that:

ATy∗ − w∗ + z∗ =
1

1 + t̂

(
AT ȳ + AT ŷ − w̄ − ŵ + z̄ + ẑ

)
=

1

1 + t̂

(
AT ȳ − w̄ + z̄

)
+

1

1 + t̂

(
AT ŷ − ŵ + ẑ − ct̂

)
+

+
1

1 + t̂
ct̂

=
1

1 + t̂
c− 1

1 + t̂
0 +

1

1 + t̂
ct̂ = c

1 + t̂

1 + t̂
= c ,

then, (y∗, w∗, z∗) ∈ F(D).

In addition, .

bTy∗ − uTw∗ = bT
(
ȳ + ŷ

1 + t̂

)
− uT

(
w̄ + ŵ

1 + t̂

)
=

1

1 + t̂

(
bT ȳ − uT w̄) + ((bT ŷ − uT ŵ − kt̂) + kt̂)

)
=

1

1 + t̂

(
k + (0 + kt̂)

)
= k .

Hence, (y∗, w∗, z∗) defined by (3.5) is a solution of the dual problem (D), with
w∗

N 2
> 0. Then N 2 = N2(w

∗) ⊆ N2 and N2 = N 2.

Therefore, we prove that Bi ∪Ni = {1, 2, . . . , n} for i = 1, 2.
In order to prove that Bi ∩Ni = ∅, two cases are also considered:

• Case i = 1

If there happened to be an index j that belonged to B1 and N1, then, there is x
∗ ∈

Rn
+ with (x∗, s∗) ∈ P∗ such that x∗

j > 0, and there is z∗ ∈ Rn
+ with (y∗, w∗, z∗) ∈ D∗

such that z∗j > 0. Therefore, x∗
jz

∗
j > 0 contradicting the complementary slackness

condition (2.5). Thus B1 ∩N1 = ∅.
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• Case i = 2

If there happened to be an index j that belonged to B2 and N2, then, there
is s∗ ∈ Rn

+ with (x∗, s∗) ∈ P∗ such that s∗j > 0, and there is w∗ ∈ Rn
+ with

(y∗, w∗, z∗) ∈ D∗ such that w∗
j > 0. Therefore, s∗jw

∗
j > 0 contradicting the

complementary slackness condition (2.6). Thus B2 ∩N2 = ∅.

Thus, for i = 1, 2, Bi and Ni are a partition of the set {1, 2, . . . , n}.
In order to prove the existence of a strictly complementary solution of the primal-

dual pair given by (2.1), we consider an arbitrary primal solution (x∗, s∗) ∈ P∗. If
x∗
i > 0 for any i ∈ {1, 2, . . . , n} then x∗

i + z∗i > 0 for all dual solution (y∗, w∗, z∗) ∈ D∗.
If x∗

i = 0, for all i ∈ {1, 2, . . . , n}, we consider the following two cases:

• There is another primal solution (x̂∗, ŝ∗) ∈ P∗ such that x̂∗
i > 0. Observe that

the vector (x̄∗, s̄∗) = t(x∗, s∗) + (1− t)(x̂∗, ŝ∗) is a convex combination of (x∗, s∗)
and (x̂∗, ŝ∗) is also a solution of (P ), moreover x̄∗

i > 0. Hence x̄∗
i + z∗i > 0 for all

(y∗, w∗, z∗) ∈ D∗.

• There is no optimal primal solution (x̂∗, ŝ∗) ∈ P∗ such that x̂∗
i > 0. That is, the

index i /∈ B1, then i ∈ N1, then there is a dual solution (y∗, w∗, z∗) ∈ D∗ with
z∗i > 0. Thus, x∗

i + z∗i > 0.

Similarly, we prove that there is an index i ∈ {1, 2, . . . , n} such that s∗i + w∗
i > 0.

3.2 Central path converges to a strictly complementary solu-
tion

Primal-dual Interior point methods are closely related to the barrier methods developed
by Fiacco and McCormick in 1960s. If the logarithmic barrier penalty is applied to the
non-negativity restrictions of the primal problem (P ) given in (2.1), we obtain:

min cTx− µ (
∑n

i=1 log xi +
∑n

i=1 log si)

s. t. Ax = b ,

x+ s = u ,

xi, si > 0, for i = 1, 2 . . . , n

(3.6)

for i = 1, 2 . . . , n, where µ > 0 is a positive parameter that controls the relationship
between the barrier term and the objective function of the problem (P ). The term µ
is known as duality measure.
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Because µ > 0, (3.6) is a convex problem, then the KKT conditions are sufficient
and necessary to find its solution. That is, (x∗, s∗) = (x∗(µ), s∗(µ)) is a solution of the
problem (3.6) if, and only if, there are y∗ = y∗(µ) ∈ Rm, z∗ = z∗(µ) and w∗ = w∗(µ) ∈
Rn

++ that satisfy the following equations:

Ax =b, x > 0; (3.7)

x+ s =u, s > 0; (3.8)

ATy − w + z =c, w, z > 0; (3.9)

XZe =µe; (3.10)

WSe =µe. (3.11)

Using the Implicit Function theorem, it is proved that for every µ > 0 there is only
one vector (x(µ), s(µ), y(µ), w(µ), z(µ)) that satisfies the (3.7)-(3.11) equations. These
points implicitly define a curve known as central path. This curve stabilizes primal-dual
algorithms by providing a route that can be followed to the solution sets P∗ and D∗.

Using the equations (3.7)-(3.11), we define:

F : R× Rn
++ × Rn

++ × Rm × Rn
++ × Rn

++ → Rm × Rn × Rn × Rn × Rn
µ
x
s
y
w
z

 7→


Ax− b

x+ s− u
ATy − w + z − c

XZe− µe
WSe− µe

 .

Observe that for every µ̂ ∈ R++ and (x, s, y, w, z)T ∈ Rn
++×Rn

++×Rm×Rn
++×Rn

++,
the matrix given by (3.12):

∇F


µ̂
x
s
y
w
z

 =


A 0 0 0 0
In In 0 0 0
0 0 AT −In In
Z 0 0 0 X
0 W 0 S 0

 (3.12)

is non singular. Thus, by the Implicit Function Theorem, there are a neighborhood U
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of µ̂ > 0, a neighborhood V of (x, s, y, w, z)T and a transformation

φ : U → V given by

µ 7→


x(µ)
s(µ)
y(µ)
w(µ)
z(µ)

 .

That is, φ is a parametrization of the central path. We formally define this trajectory
by C = {φ(µ) : µ > 0}.

In order to prove that the central path converges to a strictly complementary solu-
tion, it is necessary to establish the next result.

Lemma 3.2. Let (x∗, s∗) ∈ P∗, (y∗, w∗, z∗) ∈ D∗ and

φ(µ) = (x(µ), s(µ), y(µ), w(µ), z(µ))T ∈ C .

Then:
xT (µ)z∗ + (x∗)T z(µ) + sT (µ)w∗ + (s∗)Tw(µ) = 2nµ. (3.13)

Proof. Observe that x(µ)− x∗ ∈ Null(A) and (z∗ − z(µ)) + (w(µ)−w∗) ∈ Im(AT ). In
fact, using (3.7) and (3.9), we have:

A(x(µ)− x∗) = Ax(µ)− Ax∗ = b− b = 0, and

AT (y(µ)− y∗) = ATy(µ)− ATy∗

= (c+ w(µ)− z(µ))− (c+ w∗ − z∗)

= (z∗ − z(µ)) + (w(µ)− w∗).

From (3.10) and (3.11), we note that xT (µ)z(µ) = nµ and sT (µ)w(µ) = nµ, respectively.

ReviSeM, Ano 2024, No. 1, 120–136 130



Castro, O., Heredia, M., Oliveira, A.

Thus, using (3.8), we have:

0 = (x(µ)− x∗)T ((z∗ − z(µ)) + (w(µ)− w∗))

=xT (µ)z∗ − xT (µ)z(µ) + xT (µ)w(µ)− xT (µ)w∗

− (x∗)T z∗ + (x∗)T z(µ)− (x∗)Tw(µ) + (x∗)Tw∗

=xT (µ)z∗ − nµ+ (u− s(µ))Tw(µ)− xT (µ)w∗

+ (x∗)T z(µ)− (u− s∗)Tw(µ) + (u− s∗)Tw∗

=xT (µ)z∗ − nµ+�����
uTw(µ)− sT (µ)w(µ)−xT (µ)w∗

+ (x∗)T z(µ)−�����
uTw(µ) + (s∗)Tw(µ)+uTw∗ − (s∗)Tw∗

=xT (µ)z∗ − nµ− nµ+(u− x(µ))Tw∗

+ (x∗)T z(µ) + (s∗)Tw(µ)

=xT (µ)z∗ + (x∗)T z(µ)− 2nµ+ sT (µ)w∗ + (s∗)Tw(µ)).

Thus, we obtain the desired result.

The next theorem is the second most important result of this work. It uses the
Definition 2.2, Theorem 3.1 and Lemma 3.2, in order to prove that the central path
converges to a strictly complementary solution.

Theorem 3.3. If limµ→0 φ(µ) = (x̄, s̄, ȳ, w̄, z̄), where φ denotes the parametrization of
the central path, then B1 = B1(x̄), N1 = N1(z̄), B2 = B2(s̄) and N2 = N2(w̄), where
B1, N1, B2 and N2 are defined by (2.7), (2.8), (2.9) and (2.10), respectively. That
is, the central path converges to a strictly complementary solution.

Proof. Let (x(µ), s(µ), y(µ), w(µ), z(µ))T ∈ C for any µ > 0. From (3.13), we have:

0 ≤ (x∗)T z(µ) ≤ 2nµ,

further, since x∗ ≥ 0 and z(µ) > 0, we note:

0 ≤ x∗
i zi(µ) ≤ 2nµ, for i = 1, 2, . . . , n. (3.14)

Substituting zi(µ) = µx−1
i (µ) in the equation (3.14), we have:

0 ≤ x∗
i ≤ 2nxi(µ), for all i = 1, 2, . . . , n. (3.15)

If µ → 0, then,
0 ≤ x∗

i ≤ 2nx̄i, for every i = 1, 2, . . . , n. (3.16)
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From (3.16), we note that,

x̄i = 0 implies that x∗
i = 0, for all x∗ ∈ P∗. (3.17)

Similarly, using (3.13) it is possible to prove that:

s̄i = 0 implies that s∗i = 0, for s∗ ∈ P∗, (3.18)

z̄i = 0 implies that z∗i = 0, for all z∗ ∈ D∗, (3.19)

w̄i = 0 implies that w∗
i = 0, for every w∗ ∈ D∗. (3.20)

Since limµ→0 φ(µ) = (x̄, s̄, ȳ, w̄, z̄) and φ is the implicit parameterization given by
equations (3.7)-(3.11), we have (x̄, s̄, ȳ, w̄, z̄) is solution of (P)-(D) because satisfies the
KKT conditions, the equations (2.2)-(2.6).

In order to prove that B1 = B1(x̄), we note that B1(x̄) ⊆ B1 because x̄ is a solution
of the problem (P). Now, consider i ∈ B1, then there is x∗ ∈ P∗ such that x∗

i > 0.
Using (3.17), we conclude that x̄i > 0. Thus, i ∈ B1(x̄), consequently B1 ⊆ B1(x̄) and
B1 = B1(x̄).

In a similar way, we use (3.18),(3.19) and (3.20) in order to prove B2 = B2(s̄),
N1 = N1(z̄) and N2 = N2(w̄), respectively.

The following example uses the theorems presented in this text.

3.3 A two-side constraints linear optimization problem to ap-
ply the theorems of this paper

We use the following problem to apply the results of theorems 3.1 and 3.3.

Example 1. Consider the two-side constraints linear optimization problem.
min x1 − x2 + x3

s. t. x1 + x2 + x3 = 1

xi + si = 0.9, i = 1, 2, 3

(xi, si) ≥ 0, i = 1, 2, 3.

(3.21)

The problem (3.21) has infinite solutions given by x∗ = ((1 − λ)0.1, 0.9, 0.1λ)T ,
s∗ = (0.8+0.1λ, 0, 0.9−0.1λ)T , where λ ∈ [0, 1]. The sets specified in Definition 2.2
in this example are:

• If λ = 0, B1(x
∗) = {1, 2} and B2(s

∗) = {1, 3}.
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• When 0 < λ < 1, B1(x
∗) = {1, 2, 3} and B2(s

∗) = {1, 3}.

• If λ = 1, B1(x
∗) = {2, 3} and B2(s

∗) = {1, 3}.

Therefore,

B1 =
⋃

x∗∈P∗

B1(x
∗) = {1, 2, 3} and B2 =

⋃
s∗∈P∗

B2(s
∗) = {1, 3}. (3.22)

The dual problem of (3.21) is:

max y − 0.9w1 − 0.9w2 − 0.9w3

s. t. y + z1 − w1 = 1

y + z2 − w2 = −1

y + z3 − w3 = 1

(zi, wi) ≥ 0, for i = 1, 2, 3.

(3.23)

Problem given by (3.23) has only one solution:

y = 1, z∗ = (0, 0, 0)T andw∗ = (0, 2, 0)T ,

then: N1(z
∗) = ∅, N2(w

∗) = {2}. Therefore:

N1 =
⋃

z∗∈D∗

N1(z
∗) = ∅ and N2 =

⋃
w∗∈D∗

N2(w
∗) = {2}. (3.24)

Now, we sketch the central path as accurately as possible, see Figure 1. The next
system of equations defines implicitly the parameterization of the central path in this
example: 

x1 + x2 + x3 = 1

xi + si = ui i = 1, 2, 3

y + zi − wi = ci for every i = 1, 2, 3

xizi = µ, for i = 1, 2, 3

siwi = µ, for all i = 1, 2, 3

(xi, si, zi, wi) ≥ 0, for every i = 1, 2, 3.

(3.25)

In order to simplify notation, we use (x, s, y, z, w) ∈ C instead

(x(µ), s(µ), y(µ), z(µ), w(µ)) ∈ C .
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For i = 1, 2, 3, we have:

0 ≤ zi = ci − y + wi or y ≤ ci + wi.

Since xizi = µ, we obtain:

xi =
µ

ci − y + wi

and (3.26)

from xi + si = ui and siwi = µ:

xi =
uiwi − µ

wi

. (3.27)

Using (3.26) and (3.27), we have:

uiw
2
i + (ui(ci − y)− 2µ)wi − (ui − y)µ = 0 . (3.28)

The solution of (3.28) is

wi =
−(ui(ci − y)− 2µ)± ((ui(ci − y))2 + 4µ2)

1/2

2ui

. (3.29)

In this example, c1 = c3 and u1 = u2 = u3. From (3.29), we conclude that w1 = w3

and s1 = s3. In addition, using (3.27), x1 = x3 and z1 = z3.
Now, from (3.29), we obtain:

ci − y + wi =
ui(ci − y) + 2µ± ((ui(ci − y))2 + 4µ2)

1/2

2ui

. (3.30)

and we can substitute (3.30) in (3.26) and then (3.26) in x1 + x2 + x3 = 1 to obtain:

2(c2 − y)(2µ−
(
(u1(c1 − y))2 + 4µ2

)1/2
+

+ (c1 − y)(2µ−
(
(u1(c2 − y))2 + 4µ2

)1/2
= 2(1− 3/2u1)(c1 − y)(c2 − y). (3.31)

Note that (3.31) defines implicitly y and µ.
Using Bézier curve, parametric curves that approximates y and µ are given by:

µ̃(t) = 2 · 0.05t(1− t) + 0.32t2; (3.32)

ỹ(t) = (1− t)2 + 2(−0.28)t(1− t)− 0.22t2, (3.33)
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Figure 1: Approximation for primal cen-
tral path

for t ∈ [0, 1]. In this way, using (3.32) in (3.33), it is possible to obtain a function that
approximates y such that it depends on µ in the interval [0, 0.2]:

ỹ(µ̃) =
(
1− t̃

)2
+ 2(−0.28)t̃(1− t̃)− 0.22t̃2 (3.34)

where t̃ = t(µ̃) is an inverse function of µ̃.
Finally, using (3.34), (3.29) and (3.26), the Figure 1 shows the parametric functions

(x̃1(µ̃), x̃2(µ̃), x̃3(µ̃)) for µ̃ in [0, 0.2]. Where x̃i approximates primal central path.
We note that the parametric functions (x̃1(µ̃), x̃2(µ̃), x̃3(µ̃)) for values of µ near zero

converges to (0.05, 0.9, 0.05)T . In fact, the central path of the primal-dual pair given in
(3.21)-(3.23) converges to:

x̄ =

0.05
0.9
0.05

 , s̄ =

0.85
0

0.85

 , ȳ = 1, z̄ =

0
0
0

 and w̄ =

0
2
0

 . (3.35)

Further, we highlight two important observations: The solution given by (3.35) is
a strictly complementary solution and, from (3.22), (3.24) and (3.35), we check that:
B1 = B1(x̄), B2 = B2(s̄), N1 = N1(z̄) and N2 = N2(w̄).

4 Conclusions

The intention of this paper is to contribute with well-dated academic material that
allows a better understanding of the Goldman-Tucker theorem for the two-side cons-
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traints linear optimization problem, see Theorem 3.1. The motivation is the fact that
this result is scarcely studied for this formulation in academic materials in the area.
We presented some definitions and results of duality theory and optimality conditions
for this type of optimization problem.

In addition, in order to present an application of this theorem: a mathematical result
which proves that the central path converges to a strictly complementary solution, see
the Theorem 3.3. Finally, in order to illustrate the concepts and theorems studied in
this paper, we present the Example 1, which uses the Bézier curve in order to present
an approximation of a parametrization of the central path that converges to a strictly
complementary solution.
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