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Abstract

Technological advancements across various engineering fields have grown demand
for highly efficient materials for specific applications. Laminated composite materials
have emerged as a promising solution, offering a combination of favorable mechanical
properties by layering different materials. Theories, such as zig-zag theories, have been
developed to predict the mechanical behavior of these materials under external stresses.
This study investigates the outcomes provided by the Rayleigh-Ritz variational method,
employing different approximation functions, particularly focusing on unified higher-
order zig-zag kinematics. All proposed shape functions agree to the reference values,
but the model with polynomial shape function shows more applications possibilities.

Keywords: composite materials, composite laminated beams, zig-zag theory, Rayleigh-
Ritz method.

1 Introduction

Composite materials combine two or more materials to create a new, beneficial
material. This fusion can occur at either a macroscopic or microscopic scale, aiming to
enhance various properties, including strength, stiffness, corrosion resistance, aesthetics,
weight, fatigue life, and thermal and acoustic behavior [2]. Consequently, research on
composites has expanded, particularly in investigating their structural performance
when used in applications like laminated composite beams.

To describe the mechanical behavior of a beam structure, one has theories that
can be divided into classical and non-classical (or higher-order). The classical theory
(or Euler-Bernoulli theory) proposes a relation between the axial displacement and the
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transversal displacement without the influence of the shear effect, which means that
this theory cannot calculate the shear stress field [11]. This problem can be mitigated
using Timoshenko theory [15] because shear influence is considered through a linear
function along the beam’s thickness, resulting in a constant shear stress field, which is
a good improvement but does not correspond to reality. The evolution of this analysis
results in the development of several high-order theories, which approximate the shear
behavior by using high-order polynomials [4, 7], trigonometric [16], hyperbolic [13, 1],
or exponential [3] functions, improving the results substantially.

For the mechanical analysis of laminated composite beams, the most commonly
employed theories are equivalent single layer, zig-zag, and layerwise. Equivalent single
layer theory, although widely used, has limitations in capturing the characteristics of
individual, as it simplifies the material behavior through a basic averaging approach.
Layerwise theory overcomes this limitation by providing a more detailed representation
of the beam behavior, but it also increases the number of unknowns, leading to higher
computational costs. As an alternative to these theories, the zig-zag theory enriches
the kinematics of the equivalent single layer without the computational complexity
associated with layerwise, while maintaining good precision [12].

Numerous studies have explored the application of the zig-zag laminated beam the-
ory. Murakami et al. [5] introduced the concept of zig-zag as a geometric descriptor, and
incorporated it into a first-order kinematic framework [15]. Tessler et al. [14] furthered
this work by developing the refined zig-zag theory, which considers geometric aspects
and material properties to determine stress fields. Vidal and Polit [17] demonstrated
improved results by combining the zig-zag function of [5] with sinusoidal higher-order
beam kinematics. Subsequently, researchers introduced higher-order zig-zag theories
with advanced beam kinematics, enhancing accuracy, as illustrated in [6].

This study aims to analyze the efficiency of using the Rayleigh-Ritz variational
method [8], employing various shape functions by using a formulation that combines
zig-zag functions with a unified kinematic approach for beams, which can be of high-
order or otherwise. This analysis becomes important to observe in which mechanical
situations the method is most accurate, which shape function performs best for this
type of problem and the possibility of using the method for more boundary conditions.
The structure of this work is as follows: In Section 2, the necessary domain and bound-
ary restrictions are established to ensure that the first variation of the total energy
functional is equal to zero. In Section 3, the characteristics of the solved problem, the
shape functions are presented and the convergence results are analyzed. Finally, in
Section 4, the conclusions drawn from this research are presented clearly.
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2 Mathematical Development

2.1 Geometrical description

Consider a laminated composite beam with length L = xb − xa, subjected to load
q(x) and external forces T in the x- and z-axes, as illustrated in Figure 1.

The vertical thickness (height) of the beam is denoted as 2h, and the thickness of
the k-th layer is represented by 2h(k), k = 1, 2, ..., N indicating the layer number, also
the depth is denoted as b (see Figure 2). The global coordinates of the beam are defined
as z(i), i = 0, 1, 2, ..., N , such that z0 = −h, zN = h, and z(k) = z(k−1) + 2h(k).

Figure 1: General loading and geometry of a composite laminated beam.

Figure 2: General cross-section of a composite laminated beam .
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2.2 Kinematics

This current study is limited to the linear elastic behavior of the material. The
displacement fields of various beam theories that consider shear deformation are unified
through the generic function f(z), which is incorporated into the kinematics defined
by the k-th layer axial displacement field u(k)(x, z) and transverse displacement field
w(x, z), respectively given by

u(k)(x, z)= u0(x)− zw′
0(x) + f(z)ϕ(x) + ϕ

(k)
zz (z)ψ(x),

w(x, z)= w0(x).
(2.1)

In Eq. (2.1), u0(x) and w0(x) are the axial and transverse displacements in the
midplane of the beam, respectively. Function f(z) serves as a vertical shape function,
contributing to both stress and shear strain higher-order distribution along the z-axis
direction (see Table 1); ϕ(x) is the shear angle; ϕ

(k)
zz (z) is a zig-zag function and; ψ(x)

is a zig-zag amplitude function.

Table 1: Vertical shape functions for unified high-order beam theory

Source f(z)

Ref. [4]
5z

4

[
1− 4

3

( z

2h

)2
]

Ref. [7] z

[
1− 4

3

( z

2h

)2
]

Ref. [16]
5h

π
sin(

πz

2h
)

Ref. [13] z cosh(
z

2h
)− 2h sinh(

z

2h
)

Ref. [3] z exp

[
−2

( z

2h

)2
]

Ref. [1]
3π

2

[
2h tanh(

z

2h
)− z sec2(

z

2h
)
]

Considering a linear elastic strain field, it is possible to write the axial and shear
strain fields ε(k)(x, z) and γ(k)(x, z) from the displacement fields in Eq. (2.1) as
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ε(k)(x, z)=
∂u(k)

∂x
= u′0(x)− zw′′

0(x) + f(z)ϕ′(x) + ϕ(k)
zz (z)ψ

′(x),

γ(k)(x, z)=
∂w

∂x
+
∂u(k)

∂z
= f ′(z)ϕ(x) + β(k)(z)ψ(x),

(2.2)

where β(k)(z) is the first derivative of ϕ
(k)
zz (z). Utilizing the linear constitutive relation

for orthotropic materials [18] with elastic properties Q11
(k) and Q55

(k) and strain fields
given by Eq. (2.2), it is possible write normal and shear stress fields σ(k)(x, z) and
τ (k)(x, z) as follows:

σ(k)(x, z)= Q11
(k)ε(k)(x, z) = Q11

(k)
[
u′0(x)− zw′′

0(x) + f(z)ϕ′(x) + ϕ
(k)
zz (z)ψ′(x)

]
,

τ (k)(x, z)= Q55
(k)γ(k)(x, z) = Q55

(k)
[
f ′(z)ϕ(x) + β(k)(z)ψ(x)

]
.

(2.3)

Within this unified kinematic framework, the term ϕ
(k)
zz (z) can be substituted with

any zig-zag function in the literature. This can be the linear ϕ
(k)
MUR(z) by Murakami

[5], given by

ϕ
(k)
MUR(z) =

(−1)k(z(k) + z(k−1) − 2z)

2h(k)
, (2.4)

or a higher-order function, such as the sinusoidal function ϕ
(k)
SIN(z) from [6], given by

ϕ
(k)
SIN(z) = sin[ϕ

(k)
MUR(z)]−

(
z2

2z0
+

2z − 3z0z
2

12z2N

)
dϕ

(0)
MUR(z)

dz
− 2z3 − 3z0z

2

12z2N

dϕ
(N)
MUR(z)

dz
(2.5)

which is employed for comparison in this study.

2.3 Rayleigh-Ritz method

This work introduces the application of the Rayleigh-Ritz method [8] to solve the dif-
ferential equations that model the mechanical behavior of laminated composite beams.
The formulation employed here is based on the principle of the first energy theorem [9],
which states that for a conservative system, the equilibrium situation corresponds to
a stationary value of the total potential energy equal to zero, commonly referred to as
the weak form. The internal energy per unit volume, known as strain energy density
U , characterizing the deformation of the laminated composite beam, is

U(ε) = σ(x, z)ε(x, z), (2.6)
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the corresponding total differential, denoted as dU , in each layer is given by

dU =
∂U

∂εx
dεx +

∂U

∂γxy
dγxy = σ(k)(x, z)dεx + τ (k)(x, z)dγxy. (2.7)

Substitute constitutive relations in the first equalities of Eq. (2.3) into Eq. (2.7)
and integrate with respect to strain to obtain the strain energy of the k-th layer as

U =
Q

(k)
11

2

[
ε(k)(x, z)

]2
+
Q

(k)
55

2

[
γ(k)(x, z)

]2
, (2.8)

which in turn is integrated over the domain volume after substituting the strain fields
in the second equalities of Eq. (2.2) to obtain the total strain energy UT as

UT = A1

L∫
0

[ϕ′(x)]2dx+ A2

L∫
0

ϕ′(x)ψ′(x)dx+ A3

L∫
0

[ψ′(x)]2dx

+A4

L∫
0

ϕ′(x)u′0(x)dx+ A5

L∫
0

[u′0(x)]
2dx+ A6

L∫
0

ψ′(x)u′0(x)dx

−A7

L∫
0

ϕ′(x)w′′
0(x)dx− A8

L∫
0

ψ′(x)w′′
0(x)dx− A9

L∫
0

u′0(x)w
′′
0(x)dx

+A10

L∫
0

[w′′
0(x)]

2dx+ A11

L∫
0

[ϕ(x)]2dx+ A12

L∫
0

ϕ(x)ψ(x)dx+ A13

L∫
0

[ψ(x)]2dx,

(2.9)
The integrals related to the area of Eq. (2.9) can be expressed as a sum of the

stiffness terms for each layer. In the context of this specific laminated beam case, these
integrals are constants. These constants are denoted as A1 to A10, for stiffness related
to axial deformation, A11 to A13, for stiffness related to shear deformation, and are
written as An = b

∑N
k=1

∫ z(k)
z(k−1)

Sn(k)(z)dz, where the terms Sn(k)(z) are given in Table

2.
The work Ω done by external forces F on the beam is expressed as

Ω(F ) = F · d, (2.10)

where, d is the displacement caused by F . In the specific case where the external load
depends solely on the x-direction, it is further simplified as

Ω =

∫
S

p(x, y)d(x, y)dS+

∫
V

b(x, y, z)d(x, y, z)dV =

∫
L

q(x)w0(x)dx. (2.11)
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Table 2: Explicit Sn(k)(z) terms to describe An stiffness

n Sn(k)

1
Q

(k)
11

2
[f(z)]2

2 Q
(k)
11 f(z)ϕ

(k)
zz (z)

3
Q

(k)
11

2
[ϕ(k)

zz (z)]
2

4 Q
(k)
11 f(z)

5
Q

(k)
11

2
6 Q

(k)
11 ϕ

(k)
zz (z)

7 Q
(k)
11 zf(z)

8 Q
(k)
11 zϕ

(k)
zz (z)

9 Q
(k)
11 z

10
Q

(k)
11

2
z2

11
Q

(k)
55

2
[f ′(z)]2

12 Q
(k)
55 f

′(z)β(k)(z)

13
Q

(k)
55

2
[β(k)(z)]2

The energy functional Π = UT − Ω depends on four variables, as

Π [u0(x), w0(x), ϕ(x), ψ(x)] = UT − Ω, (2.12)

and can also be represented by an approximating field

Π
[
u0(j), w0(j), ϕ(j), ψ(j)

]
, with j = 1, 2, ...,m (2.13)

weighted by appropriate longitudinal shape functions, is used for the problem variables.
In Eq. (2.13), m is the number of terms in the approximating fields after truncation of
the corresponding series representation. Applying the first energy theorem and setting
the differential of Π to zero establishes the equilibrium conditions for a conservative
system, as follow
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dΠ
[
u0(j), w0(j), ϕ(j), ψ(j)

]
= 0, (2.14)

∂Π

∂u0(j)
du0(j)+

∂Π

∂w0(j)

dw0(j)+
∂Π

∂ϕ(j)

dϕ(j)+
∂Π

∂ψ(j)

dψ(j) = 0 , with j = 1, 2, ...,m. (2.15)

All 4m unknowns in Eq. (2.14) are determined by enforcing the linearly independent
condition in Eq. (2.15), as

du0(j) ̸= 0,
∂Π

∂u0(j)
= 0,

dw0(j) ̸= 0,
∂Π

∂w0(j)

= 0,

dϕ(j) ̸= 0,
∂Π

∂ϕ(j)

= 0,

dψ(j) ̸= 0,
∂Π

∂ψ(j)

= 0.

(2.16)

3 Results and Discussion

3.1 Problem properties

The dimensionless expressions for the response fields of interest, indicated with
subscript a, are

ua
(k)(x, z) = u(k)(x, z)

bEy

2hq0
, wa(x, z) = w(x, z)

800bh3Ey

L4q0
,

σa
(k)(x, z) = σ(k)(x, z)

b

q0
, τa

(k)(x, z) = τ (k)(x, z)
b

q0
.

(3.1)

Other important value is the Slenderness of the beam, defined by S = L
2h
. Notably,

the shear stress field was computed using equilibrium equations following the procedure
in [10]. The following elastic properties were used for the fiber-reinforced laminated
beam:

Ex = 25MPa, Ey = 1MPa, Gxy = 0.5MPa, Gyz = 0.2MPa, vxy = vyz = 0.25.
(3.2)

The results were obtained for the problem depicted in Figure 3. Reference values
were calculated in [6] using the Navier analytical solution, which combined Reddy beam
kinematics [7] (see Table 1) with the sinusoidal zig-zag function in Eq. (2.5). The main
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objective is to analyze the sensitivity of Rayleigh-Ritz method to different types of
longitudinal shape functions (as will be discussed in section 3.2) while maintaining the
same combination of laminated beam theory as in [6].

Figure 3: Proposed problem of a laminated beam simply supported.

The problem at hand concerns a simply supported laminated beam of three layers,
each layer of thickness 2h/3 and stacking sequence of 0o/90o/0o (referring to the angle
between the fibers and the x-axis in planes parallel to xy-plane). The boundary condi-
tions for the presented problem are defined as w(0) = w′′(0) = w(L) = w′′(L) = 0. In
addition, this structure has a slenderness ratio S = 4 and is subjected to a sinusoidal
load q0(x) as

q(x) = q0 sin(
πx

L
). (3.3)

3.2 Longitudinal shape functions

Three types of longitudinal shape functions were examined to approximate the re-
sponse fields. The first type is an approximation using exponential functions combined
with the so-called bubble function x(L − x), which is referred to as the exponential
shape function and is given by
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w0(x) =
m∑
j=1

w0jx(L− x)e
x
jL , u0(x) =

m∑
j=1

u0j
d

dx
[x(L− x)e

x
jL ],

ϕ(x) =
m∑
j=1

ϕj
d

dx
[x(L− x)e

x
jL ], ψ(x) =

m∑
j=1

ψj
d

dx
[x(L− x)e

x
jL ].

(3.4)

In the second type, the bubble function is enhanced as xj(L − x) instead of using
exponential functions, resulting in the polynomial shape function, which is given by

w0(x) =
m∑
j=1

w0jx
j(L− x), u0(x) =

m∑
j=1

u0j
d

dx

[
xj(L− x)

]
,

ϕ(x) =
m∑
j=1

ϕj
d

dx

[
xj(L− x)

]
, ψ(x) =

m∑
j=1

ψj
d

dx

[
xj(L− x)

]
.

(3.5)

These bubble functions are compatible with the specified boundary conditions and
can be readily adapted for other problem domains. The third type of longitudinal shape
function is the trigonometric shape function given by

w0(x) =
m∑
j=1

w0jsin

(
jπx

L

)
, u0(x) =

m∑
j=1

u0j
d

dx

[
sin

(
jπx

L

)]
,

ϕ(x) =
m∑
j=1

ϕj
d

dx

[
sin

(
jπx

L

)]
, ψ(x) =

m∑
j=1

ψj
d

dx

[
sin

(
jπx

L

)]
.

(3.6)

Unlike the two previous ones, this type of longitudinal shape function does not rely
on bubble functions but successfully satisfies the boundary conditions.

3.3 Main results

The results for transverse displacement w(x, 0), axial displacement u(L, z), normal
stress σ(L/2, z), and shear stress τ(0, z) were calculated for different numbers of ap-
proximation terms m until convergence was achieved to the third decimal place. This
allowed for the evaluation of the accuracy of each longitudinal shape function, as de-
picted in Figures 4-6.

Figure 4 shows that the axial and transverse displacement fields w(x, 0) and u(L, z)
exhibit rapid convergence with the exponential shape function approximation (m = 8),
whereas the normal stress field σ(L/2, z) necessitates four additional terms (m = 12) to
achieve convergence. However, the exponential shape function approximation exhibits
slower convergence for the shear stress field τ(0, z), which poses a limitation in the
context of this particular problem.
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Figure 4: Results for the exponential shape function: (a) transverse displacement
wa(x, 0), (b) axial displacement ua(L, z), (c) normal stress σa(L/2, z) and (d) shear
stress τa(0, z).

Figure 5 illustrates the performance of the polynomial shape function approxima-
tion. Notably, uniform convergence is observed for all response fields (m = 8), indi-
cating higher accuracy in this approximation method for laminated beam problems,
particularly concerning the shear stress field.

Figure 6 shows that achieving convergence required only a single term of the trigono-
metric shape function approximation. This is attributed to the similarity in behavior
between the adopted shape function and the reference function from [6].
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Figure 5: Results for the polynomial shape function: (a) transverse displacement
wa(x, 0), (b) axial displacement ua(L, z), (c) normal stress σa(L/2, z) and (d) shear
stress τa(0, z).

4 Conclusions

Based on the results, it is possible to notice that the formulation using Rayleigh-
Ritz method is precise for applications in composite laminated beam problems and
offers several possibilities of combining kinematic and zig-zag functions. These results
can be achieved with any longitudinal shape functions indicated for beam problems.
From the three types of longitudinal shape function studied, the exponential shape
function has convergence with different efficiency for each response field, presenting
good results even with low m values for w(x, z) and u(x, z), but it shows difficulties for
the stress fields, mainly shear stress. On the other hand, the polynomial shape function
has uniform convergence for all response fields with m = 8. Finally, the trigonometric
shape function presents the best convergence result for this example“, but it shows
limitations to be expanded to other boundary conditions, whereas the first two types of
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Figure 6: Results for the trigonometric shape function: (a) transverse displacement
wa(x, 0), (b) axial displacement ua(L, z), (c) normal stress σa(L/2, z) and (d) shear
stress τa(0, z).

approximation have the advantage of adaptability to various boundary conditions due
to their composition, which include the so-called bubble functions.
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