Revista Sergipana de Matemática e Educação Matemática

https://doi.org/10.34179/revisem.v9i2.19986

HOMOGENEIZAÇÃO DE UM PROBLEMA PARA UMA EQUAÇÃO ELÍPTICA COM COEFICIENTE MICROPERIÓDICO CONTINUAMENTE DIFERENCIÁVEL POR PARTES E SUJEITA A CONDIÇÕES DE DESCONTINUIDADE

Arthur Emanoel Reis Andrade Universidade Federal de Sergipe - UFS <u>reisarthur@academico.ufs.br</u>

> Fabio Carlos da Rocha Universidade Federal de Sergipe <u>fabiocrocha@academico.ufs.br</u>

> Leslie D. Pérez-Fernández Universidade Federal de Pelotas leslie.fernandez@ufpel.edu.br

Julián Bravo-Castillero Universidad Nacional Autónoma de México julian@mym.iimas.unam.mx

Resumo

Descreve-se a aplicação do método de homogeneização assintótica (MHA) a um problema de valor de contorno para uma equação elíptica com coeficiente rapidamente oscilante continuamente diferenciável por partes e condições de descontinuidade, e a solução assintótica formal resultante que aproxima a solução generalizada do problema.

Palavras-chave: Método de homogeneização assintótica, Solução assintótica formal, Problema homogeneizado, Problema local, Coeficiente efetivo.

Abstract

It is described the application of the asymptotic homogenization method to a boundaryvalue problem for an elliptic equation with rapidly oscillating twice piecewise differentiable coefficient and discontinuity conditions, and the resulting formal asymptotic solution which approximates the generalized solution of the problem.

Keywords: Asymptotic homogenization method, Formal asymptotic solution, Homogenized problem, Local problem, Effective coefficient.

1 Introdução

Materiais heterogêneos podem ser encontrados na natureza (como ossos) e em diversos setores industriais (como materiais compósitos).

Em muitos casos, a heterogeneidade do material é dada por uma repetição de um padrão recorrente na escala micro, esses são os materiais microperiódicos.

Para analisar certas propriedades desses materiais, é vantajoso dispor de um método que leve em consideração o conjunto completo, avaliando as variações de características de cada componente do material, cada contribuição de cada parte e como se dá a distribuição de forças e/ou energias ao longo de uma dimensão do meio analisado, dado uma condição de transferência interfacial.

anansauas meruer	11.			
Contexto	$a^{\varepsilon}(x)rac{du^{\varepsilon}}{dx}$	$u^{arepsilon}$	$rac{du^arepsilon}{dx}$	$a^{arepsilon}$
Mecânico	Tensão	Deslocamento	Deformação	Rigidez
	mecânica	mecânico	mecânica	
Condução	Fluxo	Temperatura	Gradiente	Condutividade
térmica	de calor		de temperatura	térmica
Condução	Corrente	Potencial	Campo	Condutividade
elétrica	elétrica	elétrico	elétrico	elétrica
Eletrostática	Deslocamento	Potencial	Campo	Permitividade
	elétrico	elétrico	elétrico	elétrica
Magnetostática	Indução	Potencial	Campo	Permeabilidade
	magnética	magnético	magnético	magnética

Em certos contextos físicos, algumas das propriedades que são interessantes de serem analisadas incluem:

O método apresentado aborda o problema com uma equação diferencial elíptica, a qual, combinada com condições de contorno aplicadas de acordo com o caso, fornece dados sobre a propriedade analisada do meio microperiódico.

Para se obter os resultados, é possível que se chegue a uma solução de forma direta para problemas relativamente simples, mas para problemas mais complexos é necessário outra abordagem, seja porque a solução é muito custosa computacionalmente ou seja porque não é possível encontrar uma.

Uma abordagem alternativa é empregar algum método de homogeneização matemática para construir uma solução assintótica formal (SAF) do problema. Para isto, neste trabalho, emprega-se o método de homogeneização assintótica (MHA, [1]) estendido para considerar descontinuidades interfaciais [2].

2 Preliminares

2.1 Formulação do problema

Considere o problema do equilíbrio térmico de uma barra compósita r-fásica, $r \in \mathbb{N}$, de comprimento unitário, formada pela concatenação de $n \in \mathbb{N}$ sub-barras idênticas de comprimento $\varepsilon = 1/n$, de maneira que a barra tem estrutura ε -periódica em $x \in [0, 1]$. Para n suficientemente grande, tem-se $0 < \varepsilon \ll 1$, ou seja, ε é um parâmetro geométrico pequeno que caracteriza a separação das escalas estruturais da barra representadas por x e x/ε , respectivamente. Assim, a condutividade térmica da barra $a^{\varepsilon}(x)$ é rapidamente oscilante. Mais especificamente, $a^{\varepsilon}(x) = a(x/\varepsilon)$ é ε -periódica, estritamente positiva, limitada e continuamente diferenciável por partes em [0, 1], ou seja, continuamente diferenciável em $[0,1] \setminus \Gamma^{\varepsilon}$ sendo $\Gamma^{\varepsilon} = \{x_{pq}\}, p, q \in \mathbb{N}, p = 1, 2, \ldots, n, q = 1, 2, \ldots, r-1,$ o conjunto finito de pontos de descontinuidades, todas de salto finito, de $a^{\varepsilon}(x)$, em que p denota a p-ésima sub-barra e q representa a interface entre as fases constituintes q-ésima e (q+1)-ésima, conforme ilustrado na Figura 1. Para completude da notação, denota-se $x_{10} = 0$ e $x_{nr} = 1 = n\varepsilon$ para as extremidades da barra, e $x_{pr} = x_{p+10} = p\varepsilon$, $p = 1, 2, \ldots, n - 1$, para as interfaces entre sub-barras consecutivas. Sem perda de generalidade, pode-se assumir que a primeira e a r-ésima fases constituintes são feitas do mesmo material homogêneo, de maneira que $a^{\varepsilon}(x)$ é contínua nas interfaces entre sub-barras consecutivas e tem K = n(r-1) descontinuidades nas interfaces entre as fases de materiais diferentes. Logo, pode-se escrever $\Gamma^{\varepsilon} = \{x_k\}, k = 1, 2, \dots, K$.

Figura 1: Barra r-fásica ε -periódica e sua condutividade térmica $a^{\varepsilon}(x)$.

Ainda, considera-se que existe uma barreira térmica nas interfaces $x \in \Gamma^{\varepsilon}$ entre as fases constituintes ao interior das sub-barras caracterizada pela resistência térmica $1/\beta^{\varepsilon} = \varepsilon/\beta$, de maneira que o salto da temperatura $u^{\varepsilon}(x)$ ao atravessar as interfaces $x \in \Gamma^{\varepsilon}$ é proporcional ao fluxo de calor $a^{\varepsilon}(x)(du^{\varepsilon}/dx)$ nesses pontos, o qual supõe-se contínuo. Finalmente, a barra está sob a ação da fonte de calor contínua f(x) e sua temperatura é nula nas extremidades da barra.

Com tais considerações, sendo $\llbracket g(x) \rrbracket = \lim_{y \to x^+} g(y) - \lim_{y \to x^-} g(y)$ o operador de salto nas interfaces $x \in \Gamma^{\varepsilon}$, neste trabalho estuda-se o seguinte problema de valores de contorno:

$$\begin{cases} \frac{d}{dx} \left[a^{\varepsilon}(x) \frac{du^{\varepsilon}}{dx} \right] + f(x) = 0, \quad x \in (0,1) \setminus \Gamma^{\varepsilon} \\ \left[\left[a^{\varepsilon}(x) \frac{du^{\varepsilon}}{dx} \right] \right] = 0, \quad x \in \Gamma^{\varepsilon} \\ \left[\left[u^{\varepsilon}(x) \right] - \frac{1}{\beta^{\varepsilon}} \left[a^{\varepsilon}(x) \frac{du^{\varepsilon}}{dx} \right] = 0, \quad x \in \Gamma^{\varepsilon} \\ u^{\varepsilon}(x) = 0, \quad x \in \{0,1\} \end{cases}$$

$$(2.1)$$

Observe que quando a resistência interfacial se anula, ou seja, $1/\beta^{\varepsilon} \to 0^+$, tem-se a condição de contato perfeito $\llbracket u^{\varepsilon}(x) \rrbracket = 0$ em $x \in \Gamma^{\varepsilon}$ e, então, há a continuidade de $u^{\varepsilon}(x)$ em $x \in \Gamma^{\varepsilon}$.

É possível provar que o problema (2.1) é bem posto. Mais precisamente, pode ser provado via teorema de Lax-Milgram que o problema (2.1) tem solução única $u^{\varepsilon} \in H_0^1([0,1])$ no sentido generalizado e, ainda vale a estimativa dada pelo teorema de Fredholm para equações elípticas (Teorema 1, p. 6, de [1]).

2.2 Solução exata

Ao contrário do que ocorre em muitas outras situações, o caráter unidimensional do problema (2.1) aliado à linearidade da equação diferencial, possibilita a obtenção da solução exata $u^{\varepsilon}(x)$, a qual é apresentada aqui para posterior comparação com as SAFs obtidas via Método de Homogeneização Assintótica (MHA).

De integrar a equação diferencial $(2.1)_1$ e isolar a derivada de $u^{\varepsilon}(x)$ tem-se

$$\frac{du^{\varepsilon}}{dx} = -\frac{1}{a^{\varepsilon}(x)} \left(\int_0^x f(s)ds + C_0 \right) = -\frac{F(x) + C_0}{a^{\varepsilon}(x)}, \tag{2.2}$$

em que $F(x) = \int_0^x f(s) ds$ e C_0 é uma constante.

Logo, notando que a solução exata $u^{\varepsilon}(x)$ do problema (2.1) é definida por partes no domínio $[0,1] = [0,x_1] \cup \left(\bigcup_{k=2}^{K} (x_{k-1},x_k]\right) \cup (x_K,1]$, denotando $u^{\varepsilon}(x)$ como $u_1^{\varepsilon}(x)$ para $x \in [0,x_1], u_k^{\varepsilon}(x)$ para $x \in (x_{k-1},x_k], k = 2, \ldots, K$, e $u_{K+1}^{\varepsilon}(x)$ para $x \in (x_K,1]$, tem-se

$$u_{1}^{\varepsilon}(x) = -\int_{0}^{x} \frac{F(s) + C_{0}}{a^{\varepsilon}(s)} ds + C_{1},$$

$$u_{k}^{\varepsilon}(x) = -\int_{x_{k-1}}^{x} \frac{F(s) + C_{0}}{a^{\varepsilon}(s)} ds + u_{k-1}^{\varepsilon}(x_{k-1}) + C_{k} - C_{k-1}, \quad k = 2, \dots, K+1,$$
(2.3)

em que as constantes C_k , $k = 0, 1, \ldots, K + 1$, são obtidas de aplicar as condições de contato $(2.1)_{2,3}$ e de contorno $(2.1)_4$. Assim, da condição de contorno $u^{\varepsilon}(0) = 0$ tem-se que $C_1 = 0$. Das condições de contato tem-se que

$$C_k = -\frac{1}{\beta^{\varepsilon}} \left(\sum_{j=1}^{k-1} F(x_j) + (k-1)C_0 \right), \quad k = 2, \dots, K+1,$$
 (2.4)

e da condição de contorno: $u^{\varepsilon}(1) = 0$ tem-se

$$C_0 = -\left(\int_0^1 \frac{ds}{a^{\varepsilon}(s)} + \frac{K}{\beta^{\varepsilon}}\right)^{-1} \left(\int_0^1 \frac{F(s)}{a^{\varepsilon}(s)} ds + \frac{1}{\beta^{\varepsilon}} \sum_{k=1}^K F(x_k)\right)$$
(2.5)

Por fim, de substituir (2.4) e (2.5) em (2.3), tem-se completamente determinada a solução exata $u^{\varepsilon}(x)$ do problema (2.1).

3 Aplicação do MHA

Na maioria das situações, não é possível (ou é muito difícil) encontrar exatamente a solução de problemas em múltiplas escalas com coeficientes rapidamente oscilantes. Por outro lado, procurar aproximações numéricas diretas da solução requer de discretizações muito finas do domínio, o que pode comprometer a convergência do método numérico empregado e encarece o custo computacional. Alternativamente, neste trabalho, procura-se uma SAF $u^{(2)}(x,\varepsilon)$ do problema por meio do MHA [1] da forma

$$u^{\varepsilon}(x) \approx u^{(2)}(x,\varepsilon) = u_0(x,y) + \varepsilon u_1(x,y) + \varepsilon^2 u_2(x,y), \quad y = \frac{x}{\varepsilon}, \tag{3.1}$$

em que as funções incógnitas $u_k(x, y)$, k = 0, 1, 2, são duas vezes continuamente diferenciáveis por partes nas variáveis macro $x \in [0, 1]$ e micro $y \in [0, n]$, limitadas, e 1-periódicas em y. De substituir a SAF (3.1) na equação diferencial (2.1)₁ com $a^{\varepsilon}(x) = a(x/\varepsilon) = a(y)$ 1-periódica em y (com descontinuidades em $y \in \Gamma = \varepsilon^{-1}\Gamma^{\varepsilon}$)

levando em conta a regra da cadeia $\frac{d}{dx} = \frac{\partial}{\partial x} + \varepsilon^{-1} \frac{\partial}{\partial y}$, e agrupar por potências de ε tem-se

$$\varepsilon^{-2}(L_{yy}u_0) + \varepsilon^{-1}(L_{yy}u_1 + L_{xy}u_0 + L_{yx}u_0) + \varepsilon^0(L_{yy}u_2 + L_{xy}u_1 + L_{yx}u_1 + L_{xx}u_0 + f(x)) = O(\varepsilon),$$
(3.2)

em que foram empregados os operadores diferenciais lineares

$$L_{\alpha\beta} = \frac{\partial}{\partial\alpha} \left(a(y) \frac{\partial}{\partial\beta} \right), \quad \alpha, \beta \in \{x, y\},$$
(3.3)

e $O(\varepsilon)$ representa a coleção de termos que tendem a zero quando $\varepsilon \to 0^+$, os quais correspondem às potências positivas de ε . Assim, para que a igualdade assintótica (3.2) seja satisfeita quando $\varepsilon \to 0^+$, os coeficientes das potências negativas de ε devem anular-se, o qual gera a seguinte recorrência de equações diferenciais para os coeficientes $u_k(x, y), k = 0, 1, 2$, das potências de ε na SAF (3.1):

$$\begin{cases}
L_{yy}u_0 = 0, \\
L_{yy}u_1 = -L_{xy}u_0 - L_{yx}u_0, \\
L_{yy}u_2 = -L_{xy}u_1 - L_{yx}u_1 - L_{xx}u_0 - f(x),
\end{cases}$$
(3.4)

as quais devem ser complementadas com as condições que resultam de substituir a SAF (3.1) nas condições $(2.1)_{2,3,4}$ do problema original. Assim, a existência de $u_k(x, y)$, k = 0, 1, 2, soluções 1-periódicas em y dos problemas definidos pela recorrência (3.4) e as condições complementares é garantida pelo seguinte Lema considerando x fixo e y independente de y.

Lema [2]: Sejam $F_0(y)$, $F_1(y) \in a(y)$ funções 1-periódicas em y, continuamente diferenciáveis por partes, sendo a(y) estritamente positiva e com descontinuidades de salto finito em Γ . Sejam as funções $h : \Gamma \to \mathbb{R} \in \beta : \Gamma \to \mathbb{R}_+^*$. Então uma condição necessária e suficiente para a existência de soluções N(y) 1-periódicas do problema:

$$\begin{cases} \frac{d}{dy} \left[a(y) \frac{dN}{dy} \right] = F_0(y) + \frac{dF_1}{dy}, \quad y \in (0, n) \backslash \Gamma \\ \left[\left[a(y) \frac{dN}{dy} \right] \right] = \left[F_1(y) \right], \quad y \in \Gamma \\ \left[\left[N(y) \right] \right] = \frac{h(y)}{\beta(y)}, \quad y \in \Gamma \end{cases}$$
(3.5)

é que $\langle F_0(y) \rangle \equiv \int_0^1 F_0(y) dy = 0$. Ainda, a solução 1-periódica é única salvo uma constante aditiva, ou seja, $N(y, C) = \tilde{N}(y) + C$ em que $\tilde{N}(0) = 0$ ou $\langle \tilde{N}(y) \rangle = 0$.

Aplicando o Lema a $(3.4)_1$ com $N(y) \equiv u_0(x, y)$ e $F_0(y) \equiv 0$ cumpre-se a condição $\langle F_0(y) \rangle = 0$ identicamente. Logo, existe $u_0(x, y)$ solução 1-periódica de $(3.4)_1$, a qual é obtida como segue. De integrar $(3.4)_1$ tem-se

$$a(y)\frac{\partial u_0}{\partial y} = A(x) \implies \frac{\partial u_0}{\partial y} = \frac{A(x)}{a(y)}.$$
 (3.6)

Aplicando o operador de valor médio $\langle \cdot \rangle = \int_0^1 (\cdot) dy$ a ambos os lados levando em conta que $u_0(x, y)$ é 1-periódica e que a(y) é positiva e limitada, tem-se

$$0 = \left\langle \frac{\partial u_0}{\partial y} \right\rangle = A(x) \left\langle \frac{1}{a(y)} \right\rangle \implies A(x) = 0 \implies \frac{\partial u_0}{\partial y} = 0.$$
(3.7)

Logo, da última igualdade em (3.7) segue que $u_0(x, y) = u_0(x)$, ou seja, o primeiro termo da SAF não depende de y. Assim, $L_{xy}u_0 \equiv 0$ e, portanto, atualiza-se (3.4)₂ como

$$L_{yy}u_1 = -L_{yx}u_0 \implies \frac{\partial}{\partial y} \left[a(y)\frac{\partial u_1}{\partial y} \right] = -\frac{da}{dy}\frac{du_0}{dx}.$$
(3.8)

Observe que (3.8) tem solução $u_1(x, y)$ 1-periódica em y garantida pelo Lema com $N(y) \equiv u_1(x, y) \in F_0(y) \equiv -\frac{da}{dy}\frac{du_0}{dx}$, pois $\langle F_0(y) \rangle = \left\langle \frac{da}{dy} \right\rangle \frac{du_0}{dx} = 0$ por causa da 1-periodicidade de a(y). Devido à linearidade de (3.8) e à estrutura do seu lado direito, pode-se procurar $u_1(x, y)$ pela separação de variáveis do ansatz de Bakhvalov [3]:

$$u_1(x,y) = N_1(y)\frac{du_0}{dx},$$
(3.9)

com $N_1(y)$ 1-periódica. Isto resulta, após substituir em (3.8) e eliminação de $\frac{du_0}{dx} \neq 0$, na chamada equação do primeiro problema local:

$$\frac{d}{dy}\left[a(y)\frac{dN_1}{dy}\right] = -\frac{da}{dy},\tag{3.10}$$

que satisfaz as condições do Lema com $N(y) \equiv N_1(y)$ e $F_0(y) \equiv 0$, $F_1 \equiv -a(y)$ e $\langle F_0(y) \rangle = 0$ identicamente.

Após atualização de $(3.4)_3$ com (3.9) tem-se:

$$\frac{\partial}{\partial y} \left[a(y) \frac{\partial u_2}{\partial y} \right] = -\left(a(y) + a(y) \frac{dN_1}{dy} \right) \frac{d^2 u_0}{dx^2} - f(x) - \frac{d}{dy} \left(a(y) N_1(y) \right) \frac{d^2 u_0}{dx^2}, \quad (3.11)$$

ReviSeM, Ano 2024, Nº. 2, 103-118

109

que tem solução
$$u_2(x, y)$$
 1-periódica em y garantida pelo Lema com $N(y) \equiv u_2(x, y)$,
 $F_0(y) \equiv -\left(a(y) + a(y)\frac{dN_1}{dy}\right)\frac{d^2u_0}{dx^2} - f(x) \in F_1(y) \equiv -a(y)N_1(y)\frac{d^2u_0}{dx^2}$ se, e somente se,

$$\left\langle \left(a(y) + a(y)\frac{dN_1}{dy}\right)\frac{d^2u_0}{dx^2} + f(x)\right\rangle = \left\langle a(y) + a(y)\frac{dN_1}{dy}\right\rangle\frac{d^2u_0}{dx^2} + f(x) = 0, \quad (3.12)$$

que resulta na chamada equação homogeneizada

$$\widehat{a}\frac{d^2u_0}{dx^2} + f(x) = 0, \qquad (3.13)$$

em que

$$\widehat{a} = \left\langle a(y) + a(y) \frac{dN_1}{dy} \right\rangle \tag{3.14}$$

é o chamado coeficiente efetivo.

De maneira similar, devido à linearidade de $(3.4)_3$ e à estrutura do seu lado direito após atualização com (3.9), pode-se procurar $u_2(x, y)$ pela separação de variáveis do ansatz de Bakhvalov

$$u_2(x,y) = N_2(y)\frac{d^2u_0}{dx^2},$$
(3.15)

e substituindo (3.15) em (3.11) obtém-se:

$$\frac{d}{dy}\left[a(y)\frac{dN_2}{dy}\right]\frac{d^2u_0}{dx^2} = -\left(a(y) + a(y)\frac{dN_1}{dy}\right)\frac{d^2u_0}{dx^2} - f(x) - \frac{d}{dy}\left(a(y)N_1(y)\right)\frac{d^2u_0}{dx^2}, \quad (3.16)$$

na qual, com $\frac{d^2 u_0}{dx^2} \neq 0$, obtém-se a chamada equação do segundo problema local:

$$\frac{d}{dy}\left[a(y)\frac{dN_2}{dy}\right] = -\frac{d}{dy}(a(y)N_1(y)),\tag{3.17}$$

que tem solução 1-periódica $N_2(y)$, pois satisfaz as condições do Lema com $N(y) \equiv N_2(y) \in F_0(y) \equiv 0, F_1 \equiv -a(y)N_1(y) \in \langle F_0(y) \rangle = 0$ identicamente.

Assim, a SAF (3.1) toma a forma

$$u^{\varepsilon}(x) \sim u^{(2)}(x,\varepsilon) = u_0(x) + \varepsilon N_1\left(\frac{x}{\varepsilon}\right)\frac{du_0}{dx} + \varepsilon^2 N_2\left(\frac{x}{\varepsilon}\right)\frac{d^2u_0}{dx^2},$$
(3.18)

em que $N_1(y)$ e $N_2(y)$ são obtidas dos problemas locais primeiro e segundo definidos, respectivamente, por (3.10) e (3.17) e as condições que resultam de substituir a SAF

(3.18) nas condições de contato (2.1)_{2,3} do problema original e empregando uma das condições de unicidade no Lema. Assim, da condição (2.1)₂ com $x \in \Gamma^{\varepsilon}$ e $y \in \Gamma$ tem-se

$$0 = \left[a^{\varepsilon}(x) \frac{du^{\varepsilon}}{dx} \right] \\ \sim \left[a(y) \left(\frac{\partial}{\partial x} + \varepsilon^{-1} \frac{\partial}{\partial y} \right) \left(u_0(x) + \varepsilon N_1(y) \frac{du_0}{dx} + \varepsilon^2 N_2(y) \frac{d^2 u_0}{dx^2} \right) \right] .$$
(3.19)
$$= \left[a(y) + a(y) \frac{dN_1}{dy} \right] \frac{du_0}{dx} + \varepsilon \left[a(y) N_1(y) + a(y) \frac{dN_2}{dy} \right] \frac{d^2 u_0}{dx^2} + O(\varepsilon^2)$$

Assim, para cumprir-se (3.19), os coeficientes das derivadas de $u_0(x)$ devem anular-se, o que resulta nas condições de contato

$$\left[\!\left[a(y)\frac{dN_1}{dy}\right]\!\right] = -\left[\!\left[a(y)\right]\!\right], \quad y \in \Gamma,$$
(3.20)

$$\left[\!\left[a(y)\frac{dN_2}{dy}\right]\!\right] = -\left[\!\left[a(y)N_1(y)\right]\!\right], \quad y \in \Gamma.$$
(3.21)

Por outro lado, da condição (2.1)₃ com $x\in \Gamma^{\varepsilon}$
e $y\in \Gamma$ tem-se

$$0 = \llbracket u^{\varepsilon}(x) \rrbracket - \frac{a^{\varepsilon}(x)}{\beta^{\varepsilon}} \frac{du^{\varepsilon}}{dx}$$

$$\sim \llbracket u_{0}(x) + \varepsilon N_{1}(y) \frac{du_{0}}{dx} + \varepsilon^{2} N_{2}(y) \frac{d^{2}u_{0}}{dx^{2}} \rrbracket$$

$$- \varepsilon \left[\frac{a(y)}{\beta} \left(\frac{\partial}{\partial x} + \varepsilon^{-1} \frac{\partial}{\partial y} \right) \left(u_{0}(x) + \varepsilon N_{1}(y) \frac{du_{0}}{dx} + \varepsilon^{2} N_{2}(y) \frac{d^{2}u_{0}}{dx^{2}} \right) \right] \qquad (3.22)$$

$$= \varepsilon \left(\llbracket N_{1}(y) \rrbracket - \left[\frac{a(y)}{\beta} + \frac{a(y)}{\beta} \frac{dN_{1}}{dy} \right] \right) \frac{du_{0}}{dx}$$

$$+ \varepsilon^{2} \left(\llbracket N_{1}(y) \rrbracket - \left[\frac{a(y)}{\beta} N_{1}(y) + \frac{a(y)}{\beta} \frac{dN_{2}}{dy} \right] \right) \frac{d^{2}u_{0}}{dx^{2}} + O(\varepsilon^{3})$$

Logo, para cumprir-se (3.22), os coeficientes das derivadas de $u_0(x)$ devem anular-se, o que resulta nas condições de contato

$$\llbracket N_1(y) \rrbracket = \beta^{-1} \left[a(y) + a(y) \frac{dN_1}{dy} \right], \quad y \in \Gamma$$
(3.23)

$$[[N_2(y)]] = \beta^{-1} \left[a(y) \cdot N_1(y) + a(y) \frac{dN_2}{dy} \right], \quad y \in \Gamma.$$
(3.24)

ReviSeM, Ano 2024, Nº. 2, 103-118

111

Assim, os problemas locais primeiro e segundo são definidos, respectivamente, por (3.10), (3.20) e (3.23), e por (3.17), (3.21) e (3.24), e uma condição para a unicidade da forma N(0) = 0 ou $\langle N(y) \rangle = 0$.

Considerando o coeficiente efetivo em (3.10), tem-se

$$\frac{dN_1}{dy} = \frac{\widehat{a}}{a(y)} - 1, \qquad (3.25)$$

e de aplicar o operador de valor médio $\langle \cdot \rangle$ com a condição de contato (3.23) tem-se

$$\widehat{a} = \left(\left\langle \frac{1}{a(y)} \right\rangle + \frac{r-1}{\beta} \right)^{-1}.$$
(3.26)

Finalmente, se considerar $N_2(y) = 0$ em (3.18) obtém-se a SAF $u^{(1)}(x,\varepsilon)$ que é a mais utilizada na maioria das aplicações, pois representa a tendência dada por $u_0(x)$ corrigida pela perturbação local $\varepsilon u_1(x, y)$.

4 Exemplo

Para ilustrar a proximidade entre a SAF $u^{(2)}(x,\varepsilon)$ e a solução exata $u^{\varepsilon}(x)$, considere uma barra trifásica $(r = 3) \operatorname{com} a(y)$ dado pela extensão periódica a [0, n] de

$$a(y) = \begin{cases} 5, & y \in \left[0, \frac{1}{4}\right] \cup \left(\frac{3}{4}, 1\right] \\ 10, & y \in \left(\frac{1}{4}, \frac{3}{4}\right] \end{cases},$$
(4.1)

de maneira que tem 2n descontinuidades, e sujeita à ação de uma fonte de calor unitária uniformemente distribuida, ou seja,

$$f(x) = 1. \tag{4.2}$$

4.1 Solução exata

A solução exata dada por (2.3)-(2.5) com $C_1 = 0$ foi implementada no software Python [4] considerando (4.1) e (4.2) e vários valores dos parâmetros $\varepsilon \in \beta$. A Figura 2 mostra a solução exata $u^{\varepsilon}(x)$ para $\beta = 100$ e $\varepsilon = 1/2$ que corresponde a n = 2 sub-barras. Observa-se as 2n = 4 descontinuidades herdadas de a(y).

Para mostrar que valores menores (resp. maiores) de β significam piores (resp. melhores) condições de contato interfacial, aplica-se o mesmo $\varepsilon = 1/2$ da Figura 2 e para $\beta = 20, 100, 500$, como ilustrado na Figura 3.

Figura 2: Solução exata $u^{\varepsilon}(x)$ com $\varepsilon=1/2$
e $\beta=100.$

Figura 3: Comparação de β diferentes.

Por outro lado, a Figura 4 ilustra o comportamento de $u^{\varepsilon}(x)$ para valores decrescentes de ε . Observa-se que aumenta o número de descontinuidades pois $n = 1/\varepsilon$, enquanto a qualidade do contato melhora pois $1/\beta^{\varepsilon} = \varepsilon/\beta$.

Figura 4: Visualização da tendência conforme ε decresce.

4.2 Solução assintótica formal

Para construir a SAF (3.18), obtém-se primeiro a solução $u_0(x)$ do problema homogeneizado definido pela equação homogeneizada (3.13) e as condições de contorno $u_0(0) = u_0(1) = 0$ obtidas de substituir a SAF (3.18) nas condições de contorno (2.1)₄ do problema original. Assim,

$$u_0(x) = \frac{1}{\widehat{a}} \int_0^x \left(\int_0^1 \int_0^s f(t) dt - \int_0^s f(t) dt \right) ds = \frac{x}{2\widehat{a}} (1-x), \tag{4.3}$$

em que o coeficiente efetivo $\hat{a} \approx 6.49351$ é obtido via (3.26). Ainda, calcula-se a solução 1-periódica $N_1(y)$ do primeiro problema local definido por (3.10), (3.20), (3.23) e a condição $N_1(0) = 0$ como

$$N_{1}(y) = \begin{cases} y\left(\frac{\hat{a}}{5}-1\right), & y \in \left[0,\frac{1}{4}\right] \\ y\left(\frac{\hat{a}}{10}-1\right) + \frac{\hat{a}}{\beta}, & y \in \left(\frac{1}{4},\frac{3}{4}\right] \\ y\left(\frac{\hat{a}}{5}-1\right) + \frac{2\hat{a}}{\beta}, & y \in \left(\frac{3}{4},1\right] \end{cases}$$
(4.4)

De forma semelhante obtém-se a solução 1-periódica $N_2(y)$ do segundo problema local definido por (3.17), (3.21), (3.24) e a condição $N_2(0) = 0$. Aqui, $N_2(y)$ é obtida de forma numérica.

Na Figura 5 mostra-se o comportamento da solução homogeneizada $u_0(x)$ em comparação com as SAFs $u^{(k)}(x,\varepsilon)$, k = 1, 2, para $\varepsilon = 1/2$ e $\beta = 100$, e na Figura 6 acrescenta-se a solução exata $u^{\varepsilon}(x)$ (encontra-se sob a curva u_2 , pode-se confirmar tal fato observando a forma de u^{ε} na Figura 4). Ainda, as quatro soluções são apresentadas também na Figura 7 para $\varepsilon = 1/64$. Observa-se que a solução exata u^{ε} e as SAFs $u^{(k)}(x,\varepsilon)$, k = 1, 2 tendem para a solução homogeneizada $u_0(x)$ quando $\varepsilon \to 0^+$.

Figura 5: As várias expansões assintóticas com $\varepsilon = 1/2$
e $\beta = 100.$

Figura 6: As várias expansões assintóticas com $\varepsilon = 1/2$
e $\beta = 100.$

Figura 7: Comparação de soluções assintóticas e exata para $\varepsilon = 1/64$ e $\beta = 100.$

4.3 Comparação de eficiência computacional

Uma das vantagens da solução assintótica formal é sua alta eficiência computacional. Para demonstrar a eficiência, foram executadas as várias expansões assintóticas e a solução exata de forma independente uma da outra, com tempos de execução apresentados na Figura 8 para $\varepsilon = 1/4$ e $\beta = 500$.

Tempo de execucao da solucao exata: 8.92499 segundos Tempo de execucao do u0: 1.24419 segundos Tempo de execucao do u1: 1.23255 segundos Tempo de execucao do u2: 1.30707 segundos

Figura 8: Comparação de velocidade entre assintóticas e exata para $\varepsilon = 1/4$ e $\beta = 500$.

O método se mostra mais útil devido à capacidade de transformar as funções complexas em outras mais simples. Em outras palavras, resolver as integrais (quando possível) e simplificá-las para uma forma reduzida, ao invés de deixar o trabalho para o computador realizar integração numérica e outras operações complexas, pode resultar em uma diferença simples de alguns segundos, como exemplificado. No entanto, para problemas mais complexos, essa diferença pode se estender inclusive para vários dias.

5 Conclusões

Com a comparação dos resultados, é possível perceber que o uso de uma solução assintótica formal é muito mais eficiente computacionalmente que a abordagem direta do problema e não prejudica os resultados finais. Vale ressaltar a importância do coeficiente efetivo, pois o mesmo agrega todas as variações de propriedade no meio em um valor sem prejudicar a precisão.

Assim, este trabalho apresentou os aspectos práticos da aplicação do método de homogeneização assintótica [1] para a obtenção de boas aproximações (as soluções assintóticas formais e homogeneizada) da solução exata de um problema dado, a qual pode não estar disponível ou ser de obtenção muito difícil analiticamente ou muito custosa computacionalmente. Os aspectos teóricos como a demonstração do Lema e da proximidade entre as soluções exata e homogeneizada podem ser encontradas em [2]. O problema linear unidimensional escolhido para tal apresentação permitiu o cálculo direto da solução exata para fins de comparação tanto em precisão quanto em custo computacional com as soluções aproximadas. Por outro lado, o problema apresenta uma característica mais geral que aqueles tratados em [1]: o contato imperfeito, o qual produz soluções descontínuas mais acordes com o comportamento real de compósitos condutivos. Tudo isto foi ilustrado mediante um exemplo original e constitui o trabalho de iniciação científica do primeiro autor.

6 Agradecimentos

Este trabalho teve apoio financeiro do CNPq via Projeto Universal No 402857/2021-6, inclusive para bolsa de iniciação científica (AERA). Os autores agredecem também as úteis contribuições dos revisores para o melhoramento do trabalho.

Referências

- [1] N. S. Bakhvalov and G. P. Panasenko, *Homogenesation: Averaging Processes in Periodic Media*, Kluwer, Dordrecht, 1989.
- [2] F. E. Álvarez-Borges, J. Bravo-Castillero, M. E. Cruz, R. Guinovart-Díaz, L. D. Pérez-Fernández, R. Rodríguez-Ramos and F. J. Sabina, Reiterated homogenization of a laminate with imperfect contact: gain enhancement of effective properties, Applied Mathematics and Mechanics (English ed.), **39**, (2018), 1119-1146.
- [3] G. P. Panasenko, Homogenization for periodic media: from microscale to macroscale. Physics of Atomic Nuclei, **71**, (2008), 681-694.
- [4] Python Software Foundation (2024), *Python v3.12.4*. Disponível em: https://www.python.org/.

Recebido em 29 de Novembro de 2023. 1^ª revisão em 01 de Julho 2024. Aceito em 03 de Setembro 2024.