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RAYLEIGH-RITZ METHOD APPLIED TO HIGH-ORDER ZIGZAG
THEORY FOR STATIC ANALYSIS OF LAMINATED COMPOSITE

BEAMS WITH DIFFERENT BOUNDARY CONDITIONS

Abstract

Laminated composite beams are structural elements that join layers with different ma-
terials to achieve the expected mechanical behavior. The zigzag theories seek to ap-
proximate such behavior, but most analyses are generally for simple supported beams.
Thus, in this work, the Rayleigh-Ritz method is used to obtain the solution of the
differential equation of the problem under analysis when several boundary conditions
are considered. The accuracy in getting the displacement and stress fields when poly-
nomial shape functions are used in the Rayleigh-Ritz method for the various boundary
conditions adopted in this work is analyzed. The results generated by the approximate
solution with a few terms in the series (m = 8) proved sufficient to recover the answers
from the reference values.

Keywords: composite materials, composite laminated beams, zigzag theory, Rayleigh-
Ritz method.

1 Introduction

According to [2], a composite material results from combining two or more materials
that do not mix or dissolve into each other. This process creates an engineering material
with unique properties not found in the individual components. The primary aim of this
combination is to enhance various properties, including strength, stiffness, resistance to
corrosion, aesthetics, weight, fatigue life, and thermal and acoustic behavior [3].

Various beam theories exist for static analysis of an isotropic structure under exter-
nal loads. The first theory, Euler-Bernoulli, neglects the shear effect in its kinematics.
As a result, it cannot predict the shear stress distribution and its impacts on displace-
ments and rotations [13]. This limitation led to the development of the Timoshenko
approach [17], which considers the shear effect by introducing a linear function along
the height of the beam, resulting in a constant shear stress field. While this was an
improvement, it still does not fully represent the real-world behavior of beams.
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Subsequently, several high-order theories emerged in the pursuit of better accuracy.
These theories approximate the shear behavior using high-order polynomials, trigono-
metric, hyperbolic, or exponential functions [5, 11, 18, 15, 4, 1], substantially improving
analysis results.

When it comes to theories of laminated beams, the most frequently cited are equiv-
alent single-layer (ESL), zigzag (ZZ), and layerwise (LW). An equivalent single layer
simplifies multiple layers into one layer but does not capture the interactions within
laminates. In contrast, layerwise thoroughly analyzes individual layers and their in-
teractions, albeit at the cost computational is increased due to the growing number
of unknowns directly proportional to the number of layers. Finally, the zigzag theory
strikes a balance by incorporating a function into equivalent single-layer kinematics,
making it more computationally efficient than layerwise while maintaining precision
[14].

Numerous works on zigzag laminated beam theory have been developed. Murakami
et al. [6] introduced the ’zigzag’ function, focusing on geometric information within a
first-order kinematic framework [17]. Tessler et al. [16] advanced the theory by develop-
ing a refined zigzag theory, considering geometric and material property influences when
determining stress fields. Vidal and Polit [21] refined this approach by incorporating
the Murakami zigzag function into sinusoidal higher-order beam kinematics.

Over time, high-order zigzag theories were introduced, coupling these advanced
theories with high-order beam kinematics to enhance the accuracy of the results. For
instance, in Prado Leite and Rocha [9, 8], a combination of unified beam kinematics
and a sinusoidal zigzag function was proposed.

In the present paper, using the Rayleigh-Ritz method, structural responses are ana-
lyzed based on the unified zigzag theory for the various boundary conditions, including
simple-simple (SS), clamped free (CF), clamped-simple (CS), and clamped-clamped
(CC). The results can be used as benchmarks for zigzag high-order theory for the last
three because there are few references with these responses for comparison. The struc-
ture of this work is as follows: in section 2, the primary geometric characteristics of
the problem are defined, and the structural equilibrium is developed mathematically;
in section 3, the properties of the problems and their boundary conditions are pre-
sented, in addition to the longitudinal shape functions used in each case; in section 4,
conclusions are shown that are consistent with the results obtained previously.
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2 Mathematical Development

2.1 Geometrical description

Consider a laminated composite beam with length L = xb − xa, which is subjected to
load q(x) and external forces T in the x- and z-directions (Figure 1).

The cross-sectional height is denoted by 2h, and the thickness of each lamina is
2h(k), with k = 1, 2, ..., N represents layer numbering. The depth is denoted as b
(Figure 2). The global coordinates of the beam are given by z(i), i = 0, 1, 2, ..., N , such
that z0 = −h, zN = h, and z(k) = z(k−1) + 2h(k).

Figure 1: General loading and geometry of a composite laminated beam.

2.2 Kinematics

For all problems discussed, the material have a linear elastic behavior. The displace-
ment fields of various beam theories and zigzag functions are unified with the functions
u(k)(x, z) and w(x, z) that are the axial and transverse displacements of each layer,
respectively:

u(k)(x, z)= u0(x)− zw′
0(x) + f(z)ϕ(x) + ϕ

(k)
zz (z)ψ(x),

w(x, z)= w0(x).
(2.1)

In (Eq. 2.1), w0(x) is the transverse displacement in midplane of the beam, u0(x)
is the axial displacement in midplane of the beam, f(z) is a vertical shape function
that represents the higher-order stress and shear strain distribution (Table 1 shows
the principals high order distributions presented on literature), ϕ(x) is the shear angle,

ϕ
(k)
zz (z) is a generic zigzag function and ψ(x) is a zigzag amplitude function.
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Figure 2: General cross section and layers of a composite laminated beam .

Considering a linear elastic strain behavior, it is possible to calculate the axial and
shear strain (Eq. 2.2) from (Eq. 2.1).

ε(k)(x, z)=
∂u(k)

∂x
= u′0(x)− zw′′

0(x) + f(z)ϕ′(x) + ϕ(k)
zz (z)ψ

′(x),

γ(k)(x, z)=
∂w

∂x
+
∂u(k)

∂z
= f ′(z)ϕ(x) + β(k)(z)ψ(x).

(2.2)

Note that β(k)(z) is the first derivative of ϕ
(k)
zz (z). The linear constitutive relation (Eq.

2.3) uses the terms Q11
(k) and Q55

(k) which are the elastic properties of orthotropic
materials described in [22].

σ(k)(x, z)= Q11
(k)ε(k)(x, z) = Q11

(k)
[
u′0(x)− zw′′

0(x) + f(z)ϕ′(x) + ϕ
(k)
zz (z)ψ′(x)

]
,

τ (k)(x, z)= Q55
(k)γ(k)(x, z) = Q55

(k)
[
f ′(z)ϕ(x) + β(k)(z)ψ(x)

]
.

(2.3)

From this unified kinematics, the term ϕ
(k)
zz (z) can be replaced by any zigzag function

format, it can be linear or high order. In this paper, the high order sinusoidal format
ϕ
(k)
SIN(z) was used [9] (Eq. 2.4).
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Table 1: Vertical shape functions for unified high-order beam theory

Source f(z)

Ref. [5]
5z

4

[
1− 4

3

( z

2h

)2
]

Ref. [11] z

[
1− 4

3

( z

2h

)2
]

Ref. [18]
5h

π
sin(

πz

2h
)

Ref. [15] z cosh(
z

2h
)− 2h sinh(

z

2h
)

Ref. [4] z exp

[
−2

( z

2h

)2
]

Ref. [1]
3π

2

[
2h tanh(

z

2h
)− z sec2(

z

2h
)
]

ϕ
(k)
SIN(z) = sin[ϕ

(k)
MUR(z)]−

(
z2

2z0
+

2z − 3z0z
2

12z2N

)
dϕ

(0)
MUR(z)

dz
− 2z3 − 3z0z

2

12z2N

dϕ
(N)
MUR(z)

dz
,

(2.4)

which is written as a function of the Murakami linear format ϕ
(k)
MUR(z) [6]:

ϕ
(k)
MUR(z) =

(−1)k(z(k) + z(k−1) − 2z)

2h(k)
, (2.5)

2.3 Rayleigh-Ritz method

To solve laminated beam problems, the method employed is the Rayleigh-Ritz method
utilizing the principle of the first energy theorem. This theorem asserts that, for a
conservative system, the equilibrium situation corresponds to a stationary value of the
total potential energy , which is equal to zero. The strain energy per unit volume U
(internal energy) of the beam is defined as follow:
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U(ε) = σ(x, z)ε(x, z). (2.6)

Using the differential of a function concept, it is possible write an infinitesimal of
this energy (dU):

dU =
∂U

∂εx
dεx +

∂U

∂γxy
dγxy = σ(k)(x, z)dεx + τ (k)(x, z)dγxy. (2.7)

Continuing the process, (Eq. 2.7) was integrated concerning strain fields, resulting
in

U =
Q

(k)
11

2

[
ε(k)(x, z)

]2
+
Q

(k)
55

2

[
γ(k)(x, z)

]2
. (2.8)

To obtain the total strain energy UT , it is necessary to integrate concerning the
domain region dV = dxdA.

UT = A1

L∫
0

[ϕ′(x)]2dx+ A2

L∫
0

ϕ′(x)ψ′(x)dx+ A3

L∫
0

[ψ′(x)]2dx

+A4

L∫
0

ϕ′(x)u′0(x)dx+ A5

L∫
0

[u′0(x)]
2dx+ A6

L∫
0

ψ′(x)u′0(x)dx

−A7

L∫
0

ϕ′(x)w′′
0(x)dx− A8

L∫
0

ψ′(x)w′′
0(x)dx− A9

L∫
0

u′0(x)w
′′
0(x)dx

+A10

L∫
0

[w′′
0(x)]

2dx+ A11

L∫
0

[ϕ(x)]2dx+ A12

L∫
0

ϕ(x)ψ(x)dx+ A13

L∫
0

[ψ(x)]2dx.

(2.9)
The equation (Eq. 2.9) was derived by substituting the strain terms from (Eq. 2.2)

and separating the volume integral into two components: one across the cross-sectional
area and the other along the x-axis. The integrals related to the cross-sectional area are
consolidated into a sum of stiffness terms for each layer, signifying that these integrals
are constants for the laminated beam case. These constants are named by A1 to A10,
for stiffness due axial deformation, and A11 to A13,for stiffness due shear distortion,
and are written as An = b

∑N
k=1

∫ z(k)
z(k−1)

Sn(k)(z)dz, where the terms Sn(k)(z) are given in

Table 2.
The external energy (Ω) of the beam is given by the (Eq. 2.10),

Ω(F ) = Fd, (2.10)

where d is the displacement caused by F . In the specific case where the external load
depends solely on the x-direction, it is further simplified as
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Table 2: Explicit Sn(k)(z) terms to describe An stiffness

n Sn(k)

1
Q

(k)
11

2
[f(z)]2

2 Q
(k)
11 f(z)ϕ

(k)
zz (z)

3
Q

(k)
11

2
[ϕ(k)

zz (z)]
2

4 Q
(k)
11 f(z)

5
Q

(k)
11

2
6 Q

(k)
11 ϕ

(k)
zz (z)

7 Q
(k)
11 zf(z)

8 Q
(k)
11 zϕ

(k)
zz (z)

9 Q
(k)
11 z

10
Q

(k)
11

2
z2

11
Q

(k)
55

2
[f ′(z)]2

12 Q
(k)
55 f

′(z)β(k)(z)

13
Q

(k)
55

2
[β(k)(z)]2

Ω =

∫
S

p(x, y)d(x, y)dS+

∫
V

b(x, y, z)d(x, y, z)dV =

∫
L

q(x)w0(x)dx. (2.11)

Hence, the energy functional of the problem is represented by the difference between
internal and external energy (Eq. 2.12).

Π [u0(x), w0(x), ϕ(x), ψ(x)] = UT − Ω, (2.12)

each functional term was approximated using coefficients denoted as j × 4, where j
represents the number of approximation terms (Eq. 2.13).

Π
[
u0(j), w0(j), ϕ(j), ψ(j)

]
, with j = 1, 2, ...,m. (2.13)
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In sequence, the first energy theorem is applied when the differential of Π is equal
to zero, which means an equilibrium situation for a conservative system (Eq. 2.14 and
2.15).

dΠ
[
u0(j), w0(j), ϕ(j), ψ(j)

]
= 0, (2.14)

∂Π

∂u0(j)
du0(j)+

∂Π

∂w0(j)

dw0(j)+
∂Π

∂ϕ(j)

dϕ(j)+
∂Π

∂ψ(j)

dψ(j) = 0 , with j = 1, 2, ...,m. (2.15)

To ensure that the 4m unknowns, as presented in (Eq. 2.15), are linearly inde-
pendent and thereby possess a non-trivial solution, it is necessary for the conditions
outlined in (Eq. 2.26) to be met, knowing that the differential of the approximating
points will never be zero, so that the sum is zero, the partial derivatives of the total
energy functional will cancel each other out, thus forming a system of equations.

du0(j) ̸= 0,
∂Π

∂u0(j)
= 0,

dw0(j) ̸= 0,
∂Π

∂w0(j)

= 0,

dϕ(j) ̸= 0,
∂Π

∂ϕ(j)

= 0,

dψ(j) ̸= 0,
∂Π

∂ψ(j)

= 0.

(2.16)

3 Results and Discussion

3.1 Problem properties

In (Eq. 3.1), the dimensionless response fields are shown. In this work, the shear
stress field was calculated using the equilibrium equations according to the procedure
described by Reddy [12].

ua
(k)(x, z) = u(k)(x, z)

bEy

2hq0
, wa(x, z) = w(x, z)

800bh3Ey

L4q0
,

σa
(k)(x, z) = σ(k)(x, z)

b

q0
, τa

(k)(x, z) = τ (k)(x, z)
b

q0
.

(3.1)

For the problems analyzed here, the following elastic properties were adopted (lam-
inated beam reinforced with fiber):
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Ex = 25MPa, Ey = 1MPa, Gxy = 0.5MPa, Gyz = 0.2MPa, vxy = vyz = 0.25.
(3.2)

In addition to the response fields presented in (Eq 3.1), the beam slenderness param-
eter, here called S = L

2h
, is of great importance for the mechanical analysis of beams.

For the boundary conditions SS (simply supported-simply supported), CF (clamped-
free), CS (clamped-simply supported), and CC (clamped-clamped), the parameter S
was obtained for beams modeled by Reddy kinematics, theory ZZ and using the zigzag
function given by (Eq. 2.4). Due to the lack of results in the literature for high-order
beams and with boundary conditions other than simply supported, some examples are
compared with simpler equivalent single-layer laminated theory, and the differences in
results are discussed.

Table 3: Composite laminated beams problems solved

Problem Type Boundary conditions Load S
1 S-S w(0) = w(L) = 0 sinusoidal 4
2 S-S w(0) = w(L) = 0 uniform 5
3 C-F u(0) = w(0) = w′(0) = 0 uniform 5
4 C-S u(0) = w(0) = w′(0) = w(L) = 0 uniform 5
5 C-C u(0) = w(0) = w′(0) = u(L) = w(L) = w′(L) = 0 uniform 5

All five problems described in Table 3 involve laminated beams, each consisting of
three layers with a thickness of h/3 and stacking sequence 0°/90°/0° (angle between
fibers and x-axis). . Furthermore, in Problem 1, the beam supports a sinusoidal load
as described in (Eq. 3.3) with a slenderness parameter (S) equal to 4. In problems 2,
3, 4, and 5, the beams support a uniform load defined in (Eq. 3.4) with a slenderness
parameter S = 5.

q(x) = q0 sin(
πx

L
). (3.3)

q (x) = q0. (3.4)

3.2 Longitudinal shape functions

Prado Leite and Rocha [10] studied the efficiency of longitudinal shape functions for
the Rayleigh-Ritz method applied to zigzag laminated beam problems and concluded
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the polynomial shape function given by (Eq 3.5) is a satisfactory option for Problems
1 and 2.

w0(x) =
m∑
j=1

w0jx
j(L− x), u0(x) =

m∑
j=1

u0j
d

dx

[
xj(L− x)

]
,

ϕ(x) =
m∑
j=1

ϕj
d

dx

[
xj(L− x)

]
, ψ(x) =

m∑
j=1

ψj
d

dx

[
xj(L− x)

]
,

(3.5)

To be compatible with the C-F boundary conditions (Problem Type 3), (Eq 3.5)
must be changed into the (Eq. 3.6):

w0(x) =
m∑
j=1

w0jx
(j+1), u0(x) =

m∑
j=1

u0j
d

dx

[
x(j+1)

]
,

ϕ(x) =
m∑
j=1

ϕj
d

dx

[
x(j+1)

]
, ψ(x) =

m∑
j=1

ψj
d

dx

[
x(j+1)

]
.

(3.6)

The longitudinal shape functions must be changed to (Eq. 3.7) when the C-S
boundary condition is considered Problem Type 4).

w0(x) =
m∑
j=1

w0jx
(j+1)(L− x), u0(x) =

m∑
j=1

u0j
d

dx

[
x(j+1)(L− x)

]
,

ϕ(x) =
m∑
j=1

ϕj
d

dx

[
x(j+1)(L− x)

]
, ψ(x) =

m∑
j=1

ψj
d

dx

[
x(j+1)(L− x)

]
.

(3.7)

And finally, when the boundary condition is C-C (Problem Type 5), the shape
functions in (Eq. 3.8) must be used.

w0(x) =
m∑
j=1

w0jx
(j+1)(L− x)2, u0(x) =

m∑
j=1

u0j
d

dx

[
x(j+1)(L− x)2

]
,

ϕ(x) =
m∑
j=1

ϕj
d

dx

[
x(j+1)(L− x)2

]
, ψ(x) =

m∑
j=1

ψj
d

dx

[
x(j+1)(L− x)2

]
.

(3.8)

3.3 Main results

For Problem 1, it was previously determined that eight terms (m=8) in the approximate
solution series are sufficient to achieve convergence in the displacement and stress fields.
The results obtained by Pagano’s elasticity theory [7] were adopted as a reference. To
compare the accuracy of the results, the work of Kruszewski [5], which adopts the
equivalent single-layer theory, was adopted.
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Figure 3: Results of a Problem 1 for (a) transverse displacement wa(x, 0), (b) axial
displacement ua(L, z), (c) normal stress σa(L/2, z) and (d) shear stress τa(0, z).

In Figure 3, it is possible to observe that for all response fields, there is a fast
convergence approximation (m = 8), resulting in good accuracy when compared with
Pagano [7]. In addition, the equivalent single-layer formulation, even though using a
high order kinematics, shows some expected issues because of the consideration that
a laminate is only one layer equivalent with average elastic properties. The equivalent
single-layer results cannot capture the zigzag effect in the axial displacement field. Also,
the shear and normal stresses do not calculate the interference in inter-laminar regions,
problems that the present zigzag theory overcomes because the zigzag functions are
inserted into kinematics.

The Problems 2, 3 and 5 (see Table 3) are analyzed and their results are compared
with equivalent single-layer formulations presented in [20] and [19]. The maximum
transverse displacement values obtained by the present proposal and references [20]
and [19] are presented in Table 4. It is worth noting that the formulation proposed in
[20] combines Kruszewiski beam kinematics [5] with the ESL theory. The formulation
in [19] addresses a quasi-3D model with cubic kinematics for the axial displacement
field and quadratic kinematics for the transverse displacement field combined with the
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ESL theory.

Table 4: mid-span transversal displacement results.

Ploblem Type Thuc et al. [19] Trung-Kien et al. [20] Present
2 -2.405 -2.412 -2.5945
3 -6.854 -6.813 -7.0835
5 -1.549 -1.536 -1.5936

As shown in Table 3, it is observed that the values obtained in the present formula-
tion agree with the results obtained in [20] and [19], except for the differences already
known from the analysis of Problem 1, such as slightly lower values obtained by ESL
when compared with ZZ.

Figures 4, 5, and 6 illustrate the displacement fields for Problems 3, 4, and 5,
respectively. Since there are no results in the literature for the problems in question via
high-order ZZ beam theory, the results are presented using the Rayleigh-Ritz method
without dependence on the number of terms in the approximate solution, which will
serve as benchmarks for future comparisons.

Figure 4: Results of Problem Type 3 (a) transverse displacement wa(x, 0), (b) axial
displacement ua(L, z).

Regarding Problem 3, which is an isostatic structure, the Rayleigh-Ritz method
presents fast convergence, requiring only ten terms to construct the approximate solu-
tion. In the case of Problems 4 and 5, with abundant support, 12 terms of the solution
series are needed for the results to converge.
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Figure 5: Results of Problem Type 4 (a) transverse displacement wa(x, 0), (b) axial
displacement ua(L, z).

Figure 6: Results of Problem Type 5 (a) transverse displacement wa(x, 0), (b) axial
displacement ua(L, z).
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4 Conclusions

This work developed polynomial functions that consider the boundary conditions in
displacements for the supports S-S, C-S, C-F, and C-C. Subsequently, the Rayleigh-
Ritz method was applied to the stationary analysis of laminated beams using high-
order beam theory combined with the ZZ function proposed in [14]—the results for the
problem with S-S boundary conditions agreed with the values in the literature. The
results presented for the displacements are compatible with the types of supports C-S,
C-F, and C-C. However, for the analysis of the latter, there are no reference values in
the literature, and thus, the present work proposes benchmarks for future work.
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