

Revista Sergipana de Matemática e Educação Matemática

https://doi.org/10.34179/revisem.v9i3.21045

Special Issue in honor of the 73rd birthday of Professor José Plínio de Oliveira Santos (IMECC-UNICAMP)

PARTITIONS, TWO-LINE MATRICES AND T-SQUARED PARTITIONS

Hemar Godinho Departamento de Matemática, Universidade de Brasília, Brasília-DF, 70910-900, Brazil hemar@unb.br

Dedicated to Professor J. P. O. Santos on occasion of his 73rd birthday.

Abstract

A natural number m is said to admit a *t*-squared partition if we can find $c_1, \ldots, c_t \in \mathbb{N}$ such that

 $m = (c_1 + c_2 + \dots + c_t)^2 + 2(c_1^2 + c_2^2 + \dots + c_t^2).$

In this paper, we present a complete characterization of integers that admit t-squared partitions, and we will also introduce a correspondence between the number of partitions of n, both with and without constraints, and the number of representations of integers $m \in (1, n^2)$ as t-squared partitions.

Keywords: Partitions, Matrix Representation, Partitions Identities

1 Introduction

In 1900, Frobenius[\[4\]](#page-16-0) published a paper introducing a connection between partitions and two-line matrices. In 1984, Andrews[\[1\]](#page-15-0) revisited these ideas, demonstrating a relationship between these matrix representations and Elliptic Theta functions. A new correspondence between partitions and two-line matrices was introduced by Mondek, Ribeiro, and Santos[\[8\]](#page-16-1), with an important feature being that the conjugate of a partition can also be obtained from its corresponding matrix. This theory was further developed in the works of Brietzke, Santos, and Silva $[2, 3]$ $[2, 3]$ $[2, 3]$, where generalizations involving Mock Theta Functions are presented. In 2018, Matte and Santos[\[9\]](#page-16-4) presented an intriguing correspondence between partitions of n , two-line matrices, paths in the Cartesian plane, and integers $m \in (1, n^2)$, which admit a partition into distinct odd parts greater than one. The description of this correspondence is known as the Path Procedure. In that paper, Matte and Santos^{[\[9\]](#page-16-4)} studied these partitions in detail, deriving interesting properties.

Motivated by these ideas, Santos and I introduced the concept of t-squared partitions, as presented in Godinho and Santos $[5, 6]$ $[5, 6]$ $[5, 6]$, where we showed that all integers $m \in (1, n^2)$ admitting partitions into distinct odd parts greater than one, as mentioned in Matte and Santos[\[9\]](#page-16-4), also admit t-squared partitions. Building on this concept, we presented new correspondences between partitions, both with and without constraints, and the number of representations of an integer $m \in (1, n^2)$ as t-squared partitions.

This article has an expository nature and aims to present the ideas described in Godinho and Santos^[5], 6[]] in a unified manner, with the expectation that this account will spark new interest in the subject and potentially catalyze further innovative developments.

2 Two-Line Matrices

Let us start by introducing the correspondence between partitions and matrices, recalling that a partition of a positive integer n is a non-decreasing sequence of natural numbers whose sum is equal to n .

Let $n, \beta, \delta \in \mathbb{N} \cup \{0\}$, with $n \geq 1$, $n > \beta$ and define $\mathbb{M}(n, \beta, \delta)$ to be the set of all two-line matrices

$$
M = \begin{pmatrix} a_1 & a_2 & \cdots & a_s \\ b_1 & b_2 & \cdots & b_s \end{pmatrix}, \tag{2.1}
$$

such that $a_j, b_j \in \mathbb{N} \cup \{0\}, (a_j, b_j) \neq (0, 0), 1 \leq j \leq s$, and

$$
a_s = \beta
$$
, $a_j = a_{j+1} + b_{j+1} + \delta$ and $\sum_{i=1}^s (a_i + b_i) = n$. (2.2)

Let us also define

$$
\ell(M) = (a_1 + b_1) + \dots + (a_s + b_s) = n.
$$
\n(2.3)

Lemma 2.1. Let $M \in \mathbb{M}(n, \beta, \delta)$, written as in (2.1) , then

\n- (i)
$$
a_{s-1} \geq \beta + \delta
$$
, and $a_j \geq a_{j+1} + \delta$, for $1 \leq j \leq s-2$;
\n- (ii) $a_{s-j} = a_s + (b_s + \cdots + b_{s-j+1}) + j\delta$, for $j = 1, \ldots s-1$;
\n- (iii) $\ell(M) = (a_1 + b_1) + (\sum_{j=1}^{s-1} a_j) - (s-1)\delta$;
\n

Godinho, H.

 \Box

Proof. The first two statements follow directly from [\(2.2\)](#page-1-1). It follows from item (ii) that $a_1 = a_s + \sum_{j=2}^s b_j + (s-1)\delta$, hence

$$
\ell(M) = \sum_{j=1}^{s} (a_j + b_j) = (a_1 + b_1) + \sum_{j=1}^{s-1} a_j - (s-1)\delta.
$$

Remark 2.2. Observe that if $i \neq j$ then $\mathbb{M}(i, \beta, \delta) \cap \mathbb{M}(j, \beta, \delta) = \emptyset$, otherwise we would have a matrix M such that $\ell(M) = i$ and $\ell(M) = j$. Besides that, if we denote by $\mathbb{M}^*(n, \beta, \delta)$ the subset of $\mathbb{M}(n, \beta, \delta)$ of all matrices with at least two columns then

$$
\mathbb{M}(n,\beta,\delta) = \mathbb{M}^*(n,\beta,\delta) \cup \left\{ \left(\begin{array}{c} \beta \\ n-\beta \end{array} \right) \right\}.
$$
 (2.4)

Definition 2.3. Let $n \in \mathbb{N}$, $n \geq 2$ and $\beta, \delta \in \mathbb{N} \cup \{0\}$, with $n > \beta$. Define

$$
M_0(n, \beta, \delta) = \{ M \in M(n, \beta, \delta) \mid b_1 = 0 \}.
$$
 (2.5)

Lemma 2.4. Let $n \in \mathbb{N}$ and $\beta, \delta \in \mathbb{N} \cup \{0\}$, $n > \beta$. Then we have

$$
|\mathbb{M}(n, \beta, \delta)| = \sum_{j=2}^{n} |\mathbb{M}_{0}(j, \beta, \delta)| + 1.
$$

Proof. Since we are assuming $n > \beta = a_s$, it follows from Remark [2.2](#page-2-0) that

$$
\left(\begin{array}{c}\beta\\n-\beta\end{array}\right)\notin\mathbb{M}_{0}(j,\beta,\delta),
$$

and that

$$
\bigcup_{j=2}^n \mathbb{M}_0(j,\beta,\delta)
$$

is a disjoint union. In order to complete this proof we present the following 1-1 correspondence between $\mathbb{M}^*(n, \beta, \delta)$ (see [\(2.4\)](#page-2-1)) and the disjoint union $\bigcup_{j=2}^n \mathbb{M}_0(j, \beta, \delta)$:

$$
\begin{array}{cccc}\n & M & \longleftrightarrow & M_0 \\
a_1 & a_2 & \cdots & a_{s-1} & a_s \\
b_1 & b_2 & \cdots & b_{s-1} & b_s\n\end{array}\n\right\} \longleftrightarrow \begin{pmatrix}\na_1 & a_2 & \cdots & a_{s-1} & a_s \\
0 & b_2 & \cdots & b_{s-1} & b_s\n\end{pmatrix}.
$$
\n(2.6)

Since $\ell(M) = n$ then $\ell(M_0) = n - b_1$, hence $M_0 \in \bigcup_{j=2}^n \mathbb{M}_0(j, \beta, \delta)$. On the other hand given any $M_0 \in \bigcup_{j=2}^n \mathbb{M}_0(j, \beta, \delta)$, we can find $b_1 \in \mathbb{N} \cup \{0\}$, such that $\ell(M_0) + b_1 = n$, and determine the matrix $M \in \mathbb{M}^*(n, \beta, \delta)$ (see [\(2.6\)](#page-2-2)). Now the result follows from the fact that $\mathbb{M}^*(n, \beta, \delta) = \mathbb{M}(n, \beta, \delta) - 1$, according to [\(2.4\)](#page-2-1). \Box

2.1 Partitions and two-line Matrices

Given a matrix $M \in \mathbb{M}(n, \beta, \delta)$, written as (2.1) , if we define $\mu_j = a_j + b_j$, then we have

$$
n = \mu_1 + \cdots + \mu_s,
$$

where $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_s \ge \beta$ and $\mu_j - \mu_{j-1} \ge \delta$ (see [\(2.2\)](#page-1-1)). Thus we have a partition of n with the smallest part being at least β and the minimum distance between parts being at least δ .

On the other hand, given a partition $n = \mu_1 + \cdots + \mu_s$, with $\mu_s \ge \beta$ and $\mu_{j-1} - \mu_j \ge$ δ , we can write

$$
\mu_s = \beta + b_s = a_s + b_s \n\mu_{s-1} = (\mu_s + \delta) + b_{s-1} = a_{s-1} + b_{s-1}, \n\mu_{s-2} = (\mu_{s-1} + \delta) + b_{s-2} = (a_{s-1} + b_{s-1} + \delta) + b_{s-2} = a_{s-2} + b_{s-2},
$$

and continuing this process we obtain a matrix $M \in M(n, \beta, \delta)$ (see [\(2.1\)](#page-1-0)). This establish a bijection between the set $\mathbb{M}(n, \beta, \delta)$ and the set of all partitions of n with the smallest part being at least β and the minimum distance between parts being at least δ .

In particular we have that

- (a) The number of unrestricted partitions of n is equal to the cardinality of $\mathbb{M}(n, 1, 0)$;
- (b) The number of partitions of n into distinct parts is equal to the cardinality of $M(n, 1, 1);$
- (c) The number of partitions of n where the difference between two parts is at least two (Rogers-Ramanujan of type I) is equal to the cardinality of $\mathbb{M}(n, 1, 2)$;
- (d) The number of partitions of n where the difference between two parts is at least two and each part is greater than one (Rogers-Ramanujan of type II) is equal to the cardinality of $\mathbb{M}(n, 2, 2)$.

3 t-Squared Partitions

We say that $m \in \mathbb{N}$ admits a *t-squared partition* if we can find $c_1, \ldots, c_t \in \mathbb{N}$ such that

$$
m = (c_1 + c_2 + \dots + c_t)^2 + 2(c_1^2 + c_2^2 + \dots + c_t^2). \tag{3.1}
$$

For example, the numbers 107 and 144 can be written as

$$
107 = (5+2)^2 + 2 \times (5^2+2^2)
$$

\n
$$
144 = (3+3+1+1+1+1)^2 + 2 \times (3^2+3^2+1^2+1^2+1^2+1^2)
$$

that is, 107 admits a 2-squared partition and 144 admits a 6-squared partition.

As mentioned above, the final product of the Path Procedure consists of integers $m \in (1, n^2)$ that admit a partition into distinct odd parts greater than one. In Godinho-Santos^{[\[5\]](#page-16-5)}, it is proved that these integers m also admit t-squared partitions. In this section, we give a complete characterization of these special integers, proving that m admits a t-squared partition if and only if $m \equiv 0$ or 3 (mod 4), with the exception that the reciprocal case is not true for 12 values of m , which will be presented as follows.

Lemma 3.1. Let $m \in \mathbb{N}$ and suppose that m admits a t-squared partition. Then we can find $a, b \in \mathbb{N}$ such that $m = b^2 + 2a$ with

$$
a \equiv b \pmod{2}
$$
 and $b \le a \le b^2 \le ta$.

Proof. The fact that $m = b^2 + 2a$ follows from [\(3.1\)](#page-3-0), and since $c_j^2 \equiv c_j \pmod{2}$, for $j = 1, 2, \ldots, t$, we have that $a \equiv b \pmod{2}$. Now we focus our attention in proving the inequalities. It is easy to see that a positive integer m admits a t-squared partition if m can be written as $m = b^2 + 2a$, and there is a solution for the system

$$
\begin{cases}\n b = x_1 + \dots + x_t, \\
 a = x_1^2 + \dots + x_t^2,\n\end{cases}
$$
\n(3.2)

with $x_1, \ldots, x_t \in \mathbb{N}$. Since these are all natural numbers it follows easily that $b^2 \ge a \ge b$. The last inequality follows from the Cauchy-Schwarz inequality since

$$
b^{2} = \left(\sum_{i=1}^{t} x_{i}\right)^{2} = \left(\sum_{i=1}^{t} x_{i} \cdot 1\right)^{2} \leq \left(\sum_{i=1}^{t} x_{i}^{2}\right)\left(\sum_{i=1}^{t} 1^{2}\right) = ta.
$$

Corollary 3.2. Let $m \in \mathbb{N}$. The integer m admits a t-squared partition only if $m \equiv$ 0 or 3 (mod 4).

Proof. It follows from Lemma [3.1](#page-4-0) that $m = b^2 + 2a$, with $a \equiv b \pmod{2}$. Now it follows from this congruence condition that $m \not\equiv 1$ or 2 (mod 4). □

For some special values of m , and also for small values of t is easy to obtain t -squared partitions, as can be seen in the next two results.

Lemma 3.3. Let m be a positive integer. If $m + 1 = d^2$, for some $d \in \mathbb{N}$, then m admits a $(d-1)$ -squared partition.

Proof. Let us write $m = d^2 - 1 = (d-1)^2 + 2(d-1)$. Now take $x_1 = \cdots = x_{d-1} = 1$ as a solution for the system (3.2) , with $t = d - 1$ and $a = b = d - 1$. \Box

Lemma 3.4. Let m be a positive integer written as $m = b^2 + 2a$. Then

- (a) m admits a 1-squared partition if, and only if, $a = b^2$.
- (b) m admits a 2-squared partition if, and only if, $2a b^2$ is a square smaller than b^2 .

Proof. The case (a) is immediate, for the only possibility is to write $m = b^2 + 2b^2$. Let us proceed to the other case, considering the system (3.2) with $t = 2$. Observe that $2a - b^2 = 2(x_1^2 + x_2^2) - (x_1 + x_2)^2 = (x_1 - x_2)^2$. Thus if m admits a 2-squared partition, then $2a - b^2 = (x_1 - x_2)^2$. Since $x_1, x_2 \in \mathbb{N}$, we have that $|x_1 - x_2| < x_1 + x_2 = b$. Conversely, consider $2a - b^2 = d^2 < b^2$ and take $x_1 = (b + d)/2$ and $x_2 = (b - d)/2$. Since $b \equiv d \pmod{2}$ and $b > d$, we have that x_1 and x_2 are positive integers. \Box

Next we present some combinatorial lemmas that will be helpful for our study of numbers m admitting t-squared partitions.

Lemma 3.5. Let $c_1, c_2, \ldots, c_s \in \mathbb{N}$, with $s \geq 2$, and assume $c_1 \geq \cdots \geq c_s$. Then

$$
c_1^2 + c_2^2 + \cdots + c_s^2 \le \left(\left(\sum_{i=1}^s c_i \right) - 1 \right)^2 + 1.
$$

Proof. The proof is done by induction on s. Let $s = 2$, then

$$
(c_1 + c_2 - 1)^2 + 1 = (c_1 + c_2)^2 - 2(c_1 + c_2) + 2 \ge c_1^2 + c_2^2,
$$

since $c_1, c_2 \in \mathbb{N}$. Now, let $b = c_1 + c_2 + \cdots + c_s$. By the induction hypothesis, we have

$$
c_1^2 + \dots + c_{s-1}^2 + c_s^2 \le ((b - c_s) - 1)^2 + 1 + c_s^2 \le
$$

$$
\le (b - 1)^2 + 1 - 2c_s((b - 1) - c_s) \le (b - 1)^2 + 1,
$$

\n
$$
\ge c_s.
$$

since $b > c_s$.

Lemma 3.6. Let $c_1, c_2, \ldots, c_s \in \mathbb{N}$, with $s \geq 2$, and assume that they are not all equal. Then

$$
2\sum_{1=i (3.3)
$$

Proof. The proof is done by induction on s. The case $s = 2$ follows from $(c_1 - c_2)^2 \geq 1$. Let us assume that there is only one c_j different from the others, say $c_1 = \cdots = c_{s-1} \neq$ c_s . In this case

$$
\sum_{1=i
$$

hence the LHS of [\(3.3\)](#page-5-0) is equal to $(s-1){(s-2)c_1^2 + 2c_1c_s + 1}$ and the RHS of (3.3) is equal to $(s-1){(s-1)c_1^2+c_s^2}$. Now it is simple to see that the inequality in [\(3.3\)](#page-5-0) holds since $(c_1 - c_s)^2 \geq 1$.

Let us assume $c_1 \geq \cdots \geq c_s$ and write $c_j = c_s + \delta_j$, for $j = 1, \ldots, s - 1$. Hence we have

$$
2\sum_{1=i\n(3.4)
$$

and

$$
(s-1)\sum_{i=1}^{s} c_i^2 = s(s-1)c_s^2 + 2(s-1)c_s(\sum_{j=1}^{s-1} \delta_j) + (s-1)\sum_{i=1}^{s-1} \delta_i^2.
$$
 (3.5)

Since the δ_j 's are not all equal (for there are at least two distinct c_j 's), the result follows from the induction hypothesis, since

$$
2\sum_{1=i
$$

(see (3.4) and (3.5) above), completing the proof.

Theorem 3.7. Let $m \in \mathbb{N}$. Then m admits a t-squared partition only if m can be written as $m = b^2 + 2a$, with $a, b \in \mathbb{N}$ and

(i)
$$
\left[\sqrt{\frac{m}{3}}\right] \le b \le \lfloor \sqrt{m+1} \rfloor - 1.
$$

\n(ii) $(\left\lceil \frac{b}{t} \right\rceil)^2 + (t-1)(\left\lfloor \frac{b}{t} \right\rfloor)^2 \le a \le (b-1)^2 + 1.$

Proof. Let $m = b^2 + 2a$, and $c_1, \ldots, c_t \in \mathbb{N}$ be a solution for [\(3.2\)](#page-4-1). From the inequalities stated in Lemma [3.1](#page-4-0) we have

$$
b^2 + 2b \le m \le 3b^2,
$$

 $ReviewSeM, Year 2024, N^o. 3, 08–24$ 14

which gives (i), since $b^2 + 2b = (b+1)^2 - 1$. For the item (ii), the inequality on the RHS follows directly from Lemma [3.5.](#page-5-1) Now observe that

$$
(\lceil \frac{b}{t} \rceil)^2 + (t - 1)(\lfloor \frac{b}{t} \rfloor)^2 = \begin{cases} \frac{b^2}{t}, & \text{if } b \equiv 0 \pmod{t} \\ \frac{((b - r) + 1)^2 + (t - 1)}{t}, & \text{if } b \equiv r \not\equiv 0 \pmod{t}. \end{cases}
$$

In any case we have, (taking $r = 1$)

$$
(\lceil \frac{b}{t} \rceil)^2 + (t-1)(\lfloor \frac{b}{t} \rfloor)^2 \le \frac{b^2 + (t-1)}{t}.
$$

By Lemma [3.6,](#page-5-2) we have

$$
b^2 + (t - 1) \le t \sum_{i=1}^t c_i^2 = ta,
$$

concluding the proof.

Next, we present an elementary lemma that will be helpful in proving the main theorem of this section.

Lemma 3.8. Let $m \in \mathbb{N}$, $m \geq 5$ and let

$$
c(m) = \left\lceil \sqrt{\frac{3m - 10}{5}} \right\rceil \quad \text{and} \quad d(m) = \left\lfloor \sqrt{\frac{7m}{9}} \right\rfloor. \tag{3.6}
$$

If $m > 290$ then $d(m) > c(m) + 1$.

Proof. Observe that

$$
H(m) = \sqrt{\frac{7m}{9}} - \sqrt{\frac{3m - 10}{5}} > (\sqrt{\frac{7}{9}} - \sqrt{\frac{3}{5}})\sqrt{m} > \frac{\sqrt{m}}{10},
$$

hence $H(m)$ is an increasing function. Since $H(350) > 2$, consequently we have $d(m) \ge$ $c(m) + 1$, for $m \geq 350$. For the other values of m in the interval [290, 349], a computer search verified that $d(m) - c(m) \geq 1$, in all of these cases. \Box

Our goal is to prove that any $m \in \mathbb{N}$, $m \equiv 0$ or 3 (mod 4), admits a t-squared partition, provided m is not one of the 12 exceptional values. For this purpose we need the following theorem proved in Pall[\[10\]](#page-16-7).

 $ReviewSeM, Year 2024, N^o. 3, 08–24$ 15

Theorem 3.9 (Theorem 4, [\[10\]](#page-16-7)). Let $a, b \in \mathbb{N}$, and assume that $a \equiv b \pmod{2}$ and $7a \geq b^2 \geq 3a-5$. Then the system [\(3.2\)](#page-4-1), with $t = 7$, has a solution $c_1, \ldots, c_7 \in \mathbb{N} \cup \{0\}$.

Theorem 3.10. Let $m \in \mathbb{N}$ such that $m \equiv 0$ or 3 (mod 4) then m always admits a t-squared partition, unless

$$
m \in \{4, 7, 11, 16, 20, 23, 31, 40, 44, 55, 68, 95\}.
$$

Proof. Let $m \equiv 0$ or 3 (mod 4), and for each value of m, consider the interval $[c(m), d(m)]$, with $c(m)$, $d(m)$ given in [\(3.6\)](#page-7-0). If this interval contains at least two consecutive integers, then we can choose b within this interval such that $b \equiv m \pmod{2}$. Now, it follows from (3.6) that

$$
\frac{3}{5}m - 2 \le b^2 \le \frac{7}{9}m,\tag{3.7}
$$

Let $a = (m - b^2)/2$, and recall that $m \equiv 0$ or 3 (mod 4) and $m \equiv b \pmod{2}$. If $m \equiv 0$ (mod 4), then we also have $b^2 \equiv 0 \pmod{4}$, and if $m \equiv 3 \pmod{4}$, then b is odd, and $b^2 \equiv 1 \pmod{4}$. In any case we have $a \equiv b \pmod{2}$.

It follows from (3.7) that a and b satisfy the following inequalities

$$
9b^2 \le 7m \implies 2b^2 \le 7(m - b^2) \implies b^2 \le 7a,
$$

and

$$
3m - 10 < 5b^2 \implies 3(m - b^2) - 10 \le 2b^2 \implies 3a - 5 \le b^2.
$$

Hence, for this choice of a and b there exist a solution $c_1, \ldots, c_7 \in \mathbb{N} \cup \{0\}$ for the system (3.2) with $t = 7$, according to Theorem ??. With no loss in generality, let us assume $c_1 \geq \cdots \geq c_7 \geq 0$, and since $b \neq 0$, there must be an t such that $c_1 \geq \cdots \geq c_t \geq 1$ and $c_{t+1} = \cdots = c_7 = 0$. Therefore, m admits a t-squared partition, as desired.

It follows from Lemma [3.8](#page-7-1) that the interval $[c(m), d(m)]$ has at least two elements, provided $m > 290$. A simple computer search in the interval [3, 289], considering $m \equiv 0$ or 3 (mod 4), reveals that for the values of m listed below, we also have $d(m) \geq$ $c(m) + 1$:

For each of the remaining 88 integers m in the interval [3, 289] such that $m \equiv 0$ or 3 (mod 4), we proceed as follows (see Theorem [3.7\)](#page-6-2):

- 1. Determine $R = \lceil \sqrt{\frac{m}{3}} \rceil$ and $S = \lfloor \frac{m}{3} \rfloor$ √ $\overline{m+1}$];
- 2. Determine the values of b such that $R \le b \le S 1$ and $b \equiv m \pmod{2}$;
- 3. Determine a such that $m = b^2 + 2a$;
- 4. Find a solution for the system below assuming $x_j \leq$ √ \overline{a} :

$$
\begin{cases}\nb = x_1 + \dots + x_t \\
a = x_1^2 + \dots + x_t^2.\n\end{cases}
$$

The values of m in this interval are small, and it is relatively simple to determine which of these values admit a t-squared partition. Below, we present a short list with the twelve largest values of m in this interval and their respective t -squared partitions:

 $288 = (1 + 1 + \dots + 1)^2 + 2 \times (1^2 + 1^2 + \dots + 1^2) = 16^2 + 2 \times 16$ $287 = (7 + 2 + 2 + 1 + 1)^2 + 2 \times (7^2 + 2^2 + 2^2 + 1^2 + 1^2) = 13^3 + 2 \times 59$ $251 = (7+4)^2 + 2 \times (7^2+4^2) = 11^2 + 2 \times 65$ $248 = (5 + 5 + 1 + 1)^2 + 2 \times (5^2 + 5^2 + 1^2 + 1^2) = 12^2 + 2 \times 52$ $247 = (4 + 4 + 2 + 1 + 1 + 1)^2 + 2 \times (4^2 + 4^2 + 2^2 + 1^2 + 1^2 + 1^2) = 13^2 + 2 \times 39$ $244 = (6+3+2+1)^2 + 2 \times (6^2+3^2+2^2+1^2) = 12^2 + 2 \times 50$ $216 = (7+3)^2 + 2 \times (7^2+3^2) = 10^2 + 2 \times 58$ $215 = (6+3+1+1)^2 + 2 \times (6^2 + 3^2 + 1^2 + 1^2) = 11^2 + 2 \times 47$ $212 = (4 + 3 + 2 + 2 + 1)^2 + 2 \times (4^2 + 3^2 + 2^2 + 2^2 + 1^2) = 12^2 + 2 \times 34$ $211 = (6 + 2 + 2 + 1)^2 + 2 \times (6^2 + 2^2 + 2^2 + 1^2) = 11^2 + 2 \times 45$ $208 = (4 + 3 + 2 + 1 + 1 + 1)^2 + 2 \times (4^2 + 3^2 + 2^2 + 1^2 + 1^2 + 1^2) = 12^2 + 2 \times 32$ $207 = (6 + 2 + 1 + 1 + 1)^2 + 2 \times (6^2 + 2^2 + 1^1 + 1^2 + 1^2) = 11^2 + 2 \times 43$

Note that the remaining 76 values of m , which are smaller than 207 and not included among the 56 values listed above, fall within the interval [3,184], and for these values we have found t-squared partitions, unless m is in the set

$$
\{4, 7, 11, 16, 20, 23, 31, 40, 44, 55, 68, 95\}.
$$

 \Box

Definition 3.11. Let $m \in \mathbb{N}$ and define $f(m)$, the frequency of m, as the number of times m can be represented by a t-squared partition.

Corollary 3.12. Let $m \in \mathbb{N}$, such that $m \equiv 0$ or 3 (mod 4). Then $f(m)$ is equal to the number of non-negative solutions (c_1, c_2, \ldots, c_b) , assuming $c_1 \geq c_2 \geq \cdots \geq c_b \geq 0$, of systems of the type

$$
\begin{cases}\n b = x_1 + \dots + x_b \\
 a = x_1^2 + \dots + x_b^2,\n\end{cases}
$$
\n(3.8)

for any pair a, b such that $a \equiv b \pmod{2}$ and $m = b^2 + 2a$. Moreover, $f(m) \ge 1$ unless $m \in \{4, 7, 11, 16, 20, 23, 31, 40, 44, 55, 68, 95\}.$

Proof. Given a non-negative solution (c_1, c_2, \ldots, c_b) with $c_1 \geq c_2 \geq \cdots \geq c_b \geq 0$, we may assume that for some $t \geq 1$ we have $c_t \neq 0$ and $c_{t+1} = \cdots = c_b = 0$. This shows that m admits a t-squared partition and for any distinct non-negative solution (c_1, c_2, \ldots, c_b) of [\(3.8\)](#page-10-0), assuming $c_1 \geq c_2 \geq \cdots \geq c_b \geq 0$, we have a distinct t-squared partition of m. The final statement is a direct consequence of Theorem [3.10.](#page-8-1) \Box

Example 3.13. It is not a simple task to determine the frequency of a number, for it involves calculating the number of positive solutions of the system [\(3.8\)](#page-10-0). But for small values of m it can be easily done, for example, a simple computation shows that $f(107) = 2$ and $f(144) = 4$. Below we have a list of the distinct t-squared partitions of 107 and 144.

$$
107 = (5+2)^2 + 2 \times (5^2 + 2^2)
$$

\n
$$
107 = (2+2+1+1+1+1+1)^2 + 2 \times (2^2 + 2^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2)
$$

\n
$$
144 = (6+2)^2 + 2 \times (6^2 + 2^2)
$$

\n
$$
144 = (3+2+2+2+1)^2 + 2 \times (3^2 + 2^2 + 2^2 + 2^2 + 1^2)
$$

\n
$$
144 = (3+3+1+1+1+1)^2 + 2 \times (3^2 + 3^2 + 1^2 + 1^2 + 1^2 + 1^2)
$$

\n
$$
144 = (4+1+1+1+1+1+1)^2 + 2 \times (4^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2)
$$

For the interested reader we recommend the papers of Kloosterman^{[\[7\]](#page-16-8)} and Pall[\[10\]](#page-16-7) where conditions for the existence of integer solutions and formulas for the number of integer solutions for the system [\(3.8\)](#page-10-0) are presented.

4 The Special Set $\mathcal{U}_n(m,\beta,\delta)$

Let $m \in \mathbb{N}$, $m \equiv 0$ or 3 (mod 4) and $m \notin \{4, 7, 11, 16, 20, 23, 31, 40, 44, 55, 68, 95\}$, and let us define $\mathcal{A}(m)$ as the set of all non-negative solutions \vec{x} of the system [\(3.8\)](#page-10-0) such that

 $\vec{x} = (c_1, c_2, \dots, c_b), \text{ and } c_1 \ge c_2 \ge \dots \ge c_b \ge 0,$

for any pair a, b such that $a \equiv b \pmod{2}$ and $m = b^2 + 2a$. According to Corollary [3.12,](#page-10-1) we have $|\mathcal{A}(m)| = f(m) \geq 1$. For $\vec{x} \in \mathcal{A}(m)$, define

- $w(\vec{x})$ as the number of nonzero coordinates of \vec{x} ;
- $\mu(\vec{x})$ as the sum of the coordinates of \vec{x} ;
- $\gamma(\vec{x})$ as the biggest coordinate of \vec{x} .

Hence if $\vec{x} = (c_1, c_2, \dots, c_b) \in \mathcal{A}(m)$ and $w = w(\vec{x})$ then

$$
c_1 \ge c_2 \ge \cdots \ge c_w \ge 1
$$
, and $c_{w+1} = \cdots = c_b = 0$,
\n
$$
\mu(\vec{x}) = \sum_{i=1}^b c_i = c_1 + \cdots + c_w \text{ and } \gamma(\vec{x}) = c_1.
$$
\n(4.1)

From this point onwards, we will represent the vector $\vec{x} \in \mathcal{A}(m)$ as $\vec{x} = (c_1, \ldots, c_{w(\vec{x})})$.

For fixed $n \in \mathbb{N}$, and $\beta, \delta \in \mathbb{N} \cup \{0\}$, with $n > \beta$, we define $\mathcal{U}_n(m, \beta, \delta)$ as the subset of $\mathcal{A}(m)$ such that, if $\vec{x} \in \mathcal{U}_n(m, \beta, \delta)$ then

$$
\mu(\vec{x}) + \gamma(\vec{x}) + \delta \le n, \quad c_{w(\vec{x})} \ge \beta, \quad \text{and} \quad c_j \ge c_{j+1} + \delta, \quad \text{for } 1 \le j < w(\vec{x}). \tag{4.2}
$$

Lemma 4.1. Let $n \in \mathbb{N}$, and $\beta, \delta \in \mathbb{N} \cup \{0\}$, with $n > \beta$. If $m \geq n^2$ then

$$
\mathcal{U}_n(m,\beta,\delta)=\emptyset
$$

Proof. Suppose $m \geq n^2$ and let $\vec{x} \in \mathcal{U}_n(m, \beta, \delta)$. Writing $\vec{x} = (c_1, c_2, \dots, c_w)$, we have

$$
m = (c_1 + c_2 + \dots + c_w)^2 + 2(c_1^2 + c_2^2 + \dots + c_w^2).
$$
 (4.3)

Since $\vec{x} \in \mathcal{U}_n(m, \beta, \delta)$, we must have $(c_1 + c_2 + \cdots + c_w) + c_1 + \delta \leq n$, (see [\(4.2\)](#page-11-0)) and then

$$
(c_1 + c_2 + \dots + c_w)^2 + 2(c_1 + \delta)(c_1 + c_2 + \dots + c_w) + (c_1 + \delta)^2 \leq n^2.
$$

Since

.

$$
(c_1 + c_2 + \dots + c_w)c_1 \ge (c_1^2 + c_2^2 + \dots + c_w^2)
$$

we must have (see [\(4.3\)](#page-11-1)) $m < n^2$, a contradiction. Therefore the set $\mathcal{U}_n(m, \beta, \delta)$ must be empty. \Box

Corollary 4.2. Let $n \in \mathbb{N}$, and $\beta, \delta \in \mathbb{N} \cup \{0\}$, with $n > \beta$. The set $\mathcal{U}_n(m, \beta, \delta)$ is empty if either

$$
m \equiv 1 \text{ or } 2 \pmod{4}, m \in \{4, 7, 11, 16, 20, 23, 31, 40, 44, 55, 68, 95\}, \text{ or } m \ge n^2.
$$

Proof. These results follow directly from Corollaries [3.2](#page-4-2) and [3.12,](#page-10-1) and Lemma [4.1.](#page-11-2) □

Lemma 4.3. Let $n \in \mathbb{N}$, and $\beta, \delta \in \mathbb{N} \cup \{0\}$, with $n > \beta$. If $m_1, m_2 \in \mathbb{N}$, with $m_1 \neq m_2$ then $\mathcal{U}_n(m_1,\beta,\delta) \cap \mathcal{U}_n(m_2,\beta,\delta) = \emptyset$.

Proof. We may assume that neither m_1 nor m_2 satisfies the conditions stated in Corol-lary [4.2.](#page-11-3) Suppose that $m_1 = b_1^2 + 2a_1$, $m_2 = b_2^2 + 2a_2$ and $\vec{x} \in \mathcal{U}_n(m_1, \beta, \delta) \cap \mathcal{U}_n(m_2, \beta, \delta)$. But this implies that $\vec{x} = (c_1, \ldots, c_w)$ and

$$
\begin{cases}\n b_1 = c_1 + \cdots + c_w = b_2 \\
 a_1 = c_1^2 + \cdots + c_w^2 = a_2,\n\end{cases}
$$

which is impossivel since $m_1 \neq m_2$.

The next theorem establishes an 1-1 correspondence between subsets of $\mathcal{A}(m)$ and subsets of $\mathbb{M}(n, \beta, \delta)$ (see Section 2 above).

Theorem 4.4. Let $n \in \mathbb{N}$ and $\beta, \delta \in \mathbb{N} \cup \{0\}$, with $n > \beta$. There exits an 1-1 correspondence between vectors \vec{x} in $\bigcup_{m=1}^{n^2-1} \mathcal{U}_n(m,\beta,\delta)$ and two-line matrices M in $\bigcup_{j=1}^n \mathbb{M}_0(j, \beta, \delta).$

Proof. Let $m \in (1, n^2 - 1)$ such that $\mathcal{U}_n(m, \beta, \delta) \neq \emptyset$ (see Corollary [4.2\)](#page-11-3). According to [\(4.1\)](#page-11-4) and [\(4.2\)](#page-11-0), for any $\vec{x} \in \mathcal{U}_n(m, \beta, \delta)$, written as $\vec{x} = (c_1, c_2, \dots, c_w)$ we have

$$
c_w = \beta + d_{w+1}, \quad c_{w-1} = c_w + \delta + d_w, \quad \dots \quad, \quad c_1 = c_2 + \delta + d_2,\tag{4.4}
$$

with $d_2, d_3, \ldots, d_w \in \mathbb{N} \cup \{0\}$. Let us denote $c_{w+1} = \beta$ and associate to the vector \vec{x} the $2 \times (w + 1)$ matrix (see (4.4))

$$
M(\vec{x}) = \begin{pmatrix} (c_1 + \delta) & (c_2 + \delta) & \cdots & (c_w + \delta) & c_{w+1} \\ 0 & d_2 & \cdots & d_w & d_{w+1} \end{pmatrix}.
$$

Hence we have (see (4.4))

$$
c_{w+1} = \beta
$$
, $c_w + \delta = c_{w+1} + d_{w+1} + \delta$, and $(c_j + \delta) = (c_{j+1} + \delta) + d_{j+1} + \delta$,

for $j = 1, 2, ..., w - 1$. Since (see [\(4.4\)](#page-12-0))

$$
d_2 + \cdots + d_{w+1} = c_1 - (w-1)\delta - \beta,
$$

we have (see (4.2))

$$
\ell(M(\vec{x})) = \sum_{i=1}^{w} (c_i + \delta) + \beta + \sum_{j=2}^{w+1} d_j
$$

= 2c_1 + c_2 + \dots + c_w + \delta = \gamma(\vec{x}) + \mu(\vec{x}) + \delta \le n.

 $ReviewSeM, Year 2024, N^o. 3, 08–24$ 20

Hence (see (2.5))

$$
M(\vec{x}) \in M_0(\ell_x, \beta, \delta) \subset \bigcup_{j=1}^n M_0(j, \beta, \delta).
$$

Now take a matrix $M \in M_0(r, \beta, \delta)$, with $r \leq n$,

$$
M = \left(\begin{array}{cccc} a_1 & a_2 & \cdots & a_s & a_{s+1} \\ 0 & b_2 & \cdots & b_s & b_{s+1} \end{array}\right).
$$

According to (2.2) we have

 $a_{s+1} = \beta$, and $a_j = a_{j+1} + b_{j+1} + \delta \ge a_{j+1} + \delta > \delta$, for $j = 1, 2, ..., s$. (4.5)

Let us define

$$
\vec{x}_M=(c_1,\ldots,c_s)=((a_1-\delta),\ldots,(a_s-\delta)),
$$

hence, $c_1 \ge c_2 \ge \cdots \ge c_s$ (see [\(4.5\)](#page-13-0)) and, for $j = 1, 2, ..., s - 1$,

$$
c_j = a_j - \delta = a_{j+1} + d_{j+1} = (a_{j+1} - \delta) + d_{j+1} + \delta \ge c_{j+1} + \delta, \text{ and}
$$

\n
$$
c_s = a_s - \delta = c_{s+1} + d_{w+1} = \beta + d_{w+1} \ge \beta.
$$

It follows from Lemma [2.1\(](#page-1-2)iii) and Definition [2.3](#page-1-3) that

$$
\ell(M) = a_1 + (\sum_{j=1}^s a_j) - s\delta \n= (a_1 - \delta) + (a_1 - \delta) + (a_2 - \delta) + \dots + (a_s - \delta) + \delta \n= c_1 + c_1 + \dots + c_s + \delta \n= \mu(\vec{x}) + \gamma(\vec{x}) + \delta = r \le n.
$$
\n(4.6)

Now define

$$
m_M = (c_1 + \dots + c_s)^2 + 2(c_1^2 + \dots + c_s^2). \tag{4.7}
$$

We want to prove that $\vec{x}_M \in \mathcal{U}(m_M, \beta, \delta)$, therefore, the only thing left to be proved is that $m_M \in (1, n^2 - 1)$ (see [\(4.2\)](#page-11-0)). Observe that (see [\(4.6\)](#page-13-1))

$$
n^{2} \ge \ell(M)^{2} = (\mu(\vec{x}_{M}) + \gamma(\vec{x}) + \delta)^{2},
$$

\n
$$
= (c_{1} + \dots + c_{s})^{2} + 2(c_{1} + \delta)(c_{1} + \dots + c_{s}) + (c_{1} + \delta)^{2}
$$

\n
$$
> (c_{1} + \dots + c_{s})^{2} + 2c_{1}(c_{1} + \dots + c_{s})
$$

\n
$$
\ge (c_{1} + \dots + c_{s})^{2} + 2(c_{1}^{2} + \dots + c_{s}^{2}) = m_{M},
$$

which completes the proof.

 $ReviewSeM, Year 2024, N^o. 3, 08–24$ 21

Example 4.5. At this point, we would like to present an example illustrating how these correspondences are applied. We will start with the t-squared partitions of 107, and conclude with the corresponding partitions of 12. From Example [3.13,](#page-10-2) we have the following representations of 107:

$$
107 = (5+2)^2 + 2 \times (5^2+2^2)
$$

107 = (2+2+1+1+1+1+1+1)^2 + 2 \times (2^2+2^2+1^2+1^2+1^2+1^2+1^2).

Let $\vec{x}_1 = (5, 2)$ and $\vec{x}_2 = (2, 2, 1, 1, 1, 1, 1)$ be vectors of $\mathcal{A}(107)$. Since

$$
\mu(\vec{x}_1) + \gamma(\vec{x}_1) = 5 + 5 + 2 = 12 \text{ and } \mu(\vec{x}_2) + \gamma(\vec{x}_2) = 2 + 2 + 2 + 1 + 1 + 1 + 1 + 1 = 11,
$$

we have that $\vec{x}_1, \vec{x}_2 \in \mathcal{U}_{12}(107, 1, 0)$.

From the correpondence described in the proof of Theorem 4.4 we obtain the matrices

$$
M(\vec{x_1}) = \begin{pmatrix} 5 & 2 & 1 \\ 0 & 3 & 1 \end{pmatrix} \in M_0(12, 1, 0),
$$

and

$$
M(\vec{x_2}) = \begin{pmatrix} 2 & 2 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \in M_0(11, 1, 0).
$$

To this last matrix we apply the correspondence described in the proof of Lemma [2.4](#page-2-4) to obtain the matrix

$$
M_2 = \left(\begin{array}{rrrrrr} 2 & 2 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \end{array}\right) \in M(12, 1, 0).
$$

Finally, from the correspondence between two-line matrices and partitions (see [\(2.6\)](#page-2-2)) we have the following partitions of 12.

$$
12 = 5 + 5 + 2,
$$

\n
$$
12 = 3 + 2 + 2 + 1 + 1 + 1 + 1 + 1.
$$

Corollary 4.6. Under the same hypothesis of Theorem 4.4 we have

$$
\sum_{m=1}^{n^2-1} |\mathcal{U}_n(m,\beta,\delta)| = \sum_{j=1}^n |\mathbb{M}_0(j,\beta,\delta)|.
$$

Proof. It directly follows from Theorem [4.4,](#page-12-1) Lemma [4.3,](#page-12-2) and Remark [2.2](#page-2-0) that they collectively establish a one-to-one correspondence between unions of disjoint sets. \Box

5 Main Theorem

Now we are ready to state and prove our main Theorem presenting new formulas for the number of unrestricted partions of n , partitions of n into distinct parts, and the partitions of n arising from the two classic Rogers-Ramanujan Identities.

Theorem 5.1. Let n be a natural number. Then

- (a) The number of unrestricted partitions of n is equal to \sum^{n^2-1} $m=1$ $|\mathcal{U}_n(m, 1, 0)| + 1.$
- (b) The number of partitions of n into distinct parts is equal to \sum^{n^2-1} $m=1$ $|\mathcal{U}_n(m, 1, 1)| + 1.$
- (c) The number of partitions of n where the difference between two parts is at least two is equal to \sum^{n^2-1} $m=1$ $|\mathcal{U}_n(m, 2, 1)| + 1.$
- (d) The number of partitions of n where the difference between two parts is at least two and each part is greater than one is equal to \sum^{n^2-1} $m=1$ $|\mathcal{U}_n(m, 2, 2)| + 1.$

Proof. By the definition of $\mathbb{M}(n, \beta, \delta)$, we have that the number of unrestricted partitions of n is equal to $|\mathbb{M}(n,1,0)|$, the number of partitions of n into distinct parts is equal to $\mathcal{M}(n, 1, 1)$, the number of partitions of n where the difference between two parts is at least two is equal to $|\mathbb{M}(n, 2, 1)|$, and the number of partitions of n where the difference between two parts is at least two and each part is greater than one is equal to $|\mathbb{M}(n, 2, 2)|$. Now the conclusion follows from Lemma [2.4](#page-2-4) and Corollary [4.6,](#page-14-0) since

$$
|\mathbb{M}(n, \beta, \delta)| = \sum_{j=1}^{n} |\mathbb{M}_{0}(j, \beta, \delta)| + 1 = \sum_{m=1}^{n^{2}-1} |\mathcal{U}_{n}(m, \beta, \delta)| + 1.
$$

References

[1] Andrews, G. E., Generalized Frobenius Partitions. Mem. Am. Math Soc., vol. 49, (1984),1-44.

- [2] Brietzke, E. H. M.; Santos, J. P. O.; da Silva, R., A new approach and generalizations to some results about mock theta functions, Discrete Math. $311(8)$, (2011) , 595-615.
- [3] Brietzke, E. H. M.; Santos, J. P. O.; da Silva, R., Combinatorial interpretations as two-line array for the mock theta functions, Bull. Braz. Math. Soc., New Series 44(2), (2013), 233-253.
- [4] Frobenius, G., Uber die Charaktere der Symmetrischen Gruppe. Sitzber. Pruess. Akad. Berlin (1900), 516-534.
- [5] Godinho, H.; Santos, J. P. O., On new formulas for the Rogers-Ramanujan Identities. J. of Ramanujan Soc. of Math. and Math. Sci., v. 7, (2020), 33-46.
- [6] Godinho, H.; Santos, J. P. O., it On a new formula for the number of unrestricted partitions. The Ramanujan Journal, v. 55, (2021), 297-307.
- [7] Kloosterman, H.D., Simultane Darstellung zweier ganzen Zahlen als einer Summe von ganzen Zahlen und deren Quadratsumme. Math. Ann., vol. 18, (1942), 319-364.
- [8] Mondek, P., Ribeiro, A. C. and Santos, J. P. O., New Two-Line Arrays Representing Partitions. Ann. Comb., vol 15, (2011), 341-354.
- [9] Matte, M. L. and Santos, J. P. O., A New Approach to integer Partitions. Bull. Braz. Math. Soc., New Series, 49(4), (2018), 811-847.
- [10] Pall, G. Simultaneous Quadratic and Linear Representation. Quarterly J. of Math. vol. 2, (1931), 136-143.

Received in 09 May 2024. Accept in 15 July 2024.