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Abstract

A natural number m is said to admit a t-squared partition if we can find c1, . . . , ct ∈ N
such that

m = (c1 + c2 + · · ·+ ct)
2 + 2(c21 + c22 + · · ·+ c2t ).

In this paper, we present a complete characterization of integers that admit t-squared
partitions, and we will also introduce a correspondence between the number of partitions
of n, both with and without constraints, and the number of representations of integers
m ∈ (1, n2) as t-squared partitions.

Keywords: Partitions, Matrix Representation, Partitions Identities

1 Introduction

In 1900, Frobenius[4] published a paper introducing a connection between partitions
and two-line matrices. In 1984, Andrews[1] revisited these ideas, demonstrating a re-
lationship between these matrix representations and Elliptic Theta functions. A new
correspondence between partitions and two-line matrices was introduced by Mondek,
Ribeiro, and Santos[8], with an important feature being that the conjugate of a partition
can also be obtained from its corresponding matrix. This theory was further developed
in the works of Brietzke, Santos, and Silva[2, 3], where generalizations involving Mock
Theta Functions are presented. In 2018, Matte and Santos[9] presented an intrigu-
ing correspondence between partitions of n, two-line matrices, paths in the Cartesian
plane, and integers m ∈ (1, n2), which admit a partition into distinct odd parts greater
than one. The description of this correspondence is known as the Path Procedure. In
that paper, Matte and Santos[9] studied these partitions in detail, deriving interesting
properties.
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Motivated by these ideas, Santos and I introduced the concept of t-squared par-
titions, as presented in Godinho and Santos[5, 6], where we showed that all integers
m ∈ (1, n2) admitting partitions into distinct odd parts greater than one, as mentioned
in Matte and Santos[9], also admit t-squared partitions. Building on this concept, we
presented new correspondences between partitions, both with and without constraints,
and the number of representations of an integer m ∈ (1, n2) as t-squared partitions.

This article has an expository nature and aims to present the ideas described in
Godinho and Santos[5, 6] in a unified manner, with the expectation that this account
will spark new interest in the subject and potentially catalyze further innovative devel-
opments.

2 Two-Line Matrices

Let us start by introducing the correspondence between partitions and matrices, re-
calling that a partition of a positive integer n is a non-decreasing sequence of natural
numbers whose sum is equal to n.

Let n, β, δ ∈ N ∪ {0}, with n ≥ 1, n > β and define M(n, β, δ) to be the set of all
two-line matrices

M =

(
a1 a2 · · · as
b1 b2 · · · bs

)
, (2.1)

such that aj, bj ∈ N ∪ {0}, (aj, bj) ̸= (0, 0), 1 ≤ j ≤ s, and

as = β, aj = aj+1 + bj+1 + δ and
s∑

i=1

(ai + bi) = n. (2.2)

Let us also define

ℓ(M) = (a1 + b1) + · · ·+ (as + bs) = n. (2.3)

Lemma 2.1. Let M ∈M(n, β, δ), written as in (2.1), then

(i) as−1 ≥ β + δ, and aj ≥ aj+1 + δ, for 1 ≤ j ≤ s− 2;

(ii) as−j = as + (bs + · · ·+ bs−j+1) + jδ, for j = 1, . . . s− 1;

(iii) ℓ(M) = (a1 + b1) + (
∑s−1

j=1 aj)− (s− 1)δ;
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Proof. The first two statements follow directly from (2.2). It follows from item (ii) that
a1 = as +

∑s
j=2 bj + (s− 1)δ, hence

ℓ(M) =
s∑

j=1

(aj + bj) = (a1 + b1) +
s−1∑
j=1

aj − (s− 1)δ.

Remark 2.2. Observe that if i ̸= j then M(i, β, δ)∩M(j, β, δ) = ∅, otherwise we would
have a matrix M such that ℓ(M) = i and ℓ(M) = j. Besides that, if we denote by
M∗(n, β, δ) the subset of M(n, β, δ) of all matrices with at least two columns then

M(n, β, δ) = M∗(n, β, δ) ∪
{(

β
n− β

)}
. (2.4)

Definition 2.3. Let n ∈ N, n ≥ 2 and β, δ ∈ N ∪ {0}, with n > β. Define

M0(n, β, δ) = {M ∈M(n, β, δ) | b1 = 0}. (2.5)

Lemma 2.4. Let n ∈ N and β, δ ∈ N ∪ {0}, n > β. Then we have

|M(n, β, δ) | =
n∑

j=2

|M0(j, β, δ) |+ 1.

Proof. Since we are assuming n > β = as, it follows from Remark 2.2 that(
β

n− β

)
̸∈M0(j, β, δ),

and that
n⋃

j=2

M0(j, β, δ)

is a disjoint union. In order to complete this proof we present the following 1-1 corre-
spondence between M∗(n, β, δ) (see (2.4)) and the disjoint union

⋃n
j=2M0(j, β, δ):

M ←→ M0(
a1 a2 · · · as−1 as
b1 b2 · · · bs−1 bs

)
←→

(
a1 a2 · · · as−1 as
0 b2 · · · bs−1 bs

)
.

(2.6)

Since ℓ(M) = n then ℓ(M0) = n− b1, hence M0 ∈
⋃n

j=2M0(j, β, δ). On the other hand
given any M0 ∈

⋃n
j=2M0(j, β, δ), we can find b1 ∈ N ∪ {0}, such that ℓ(M0) + b1 = n,

and determine the matrix M ∈M∗(n, β, δ) (see (2.6)). Now the result follows from the
fact that M∗(n, β, δ) = M(n, β, δ)− 1, according to (2.4).
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2.1 Partitions and two-line Matrices

Given a matrix M ∈M(n, β, δ), written as (2.1), if we define µj = aj + bj, then we have

n = µ1 + · · ·+ µs,

where µ1 ≥ µ2 ≥ · · · ≥ µs ≥ β and µj−µj−1 ≥ δ (see (2.2)). Thus we have a partition
of n with the smallest part being at least β and the minimum distance between parts
being at least δ.

On the other hand, given a partition n = µ1+· · ·+µs, with µs ≥ β and µj−1−µj ≥
δ, we can write

µs = β + bs = as + bs
µs−1 = (µs + δ) + bs−1 = as−1 + bs−1,
µs−2 = (µs−1 + δ) + bs−2 = (as−1 + bs−1 + δ) + bs−2 = as−2 + bs−2,

and continuing this process we obtain a matrix M ∈ M(n, β, δ) (see (2.1)). This
establish a bijection between the set M(n, β, δ) and the set of all partitions of n with
the smallest part being at least β and the minimum distance between parts being at
least δ.

In particular we have that

(a) The number of unrestricted partitions of n is equal to the cardinality ofM(n, 1, 0);

(b) The number of partitions of n into distinct parts is equal to the cardinality of
M(n, 1, 1);

(c) The number of partitions of n where the difference between two parts is at least
two (Rogers-Ramanujan of type I) is equal to the cardinality of M(n, 1, 2);

(d) The number of partitions of n where the difference between two parts is at least
two and each part is greater than one (Rogers-Ramanujan of type II) is equal to
the cardinality of M(n, 2, 2).

3 t-Squared Partitions

We say that m ∈ N admits a t-squared partition if we can find c1, . . . , ct ∈ N such that

m = (c1 + c2 + · · ·+ ct)
2 + 2(c21 + c22 + · · ·+ c2t ). (3.1)
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For example, the numbers 107 and 144 can be written as

107 = (5 + 2)2 + 2× (52 + 22)
144 = (3 + 3 + 1 + 1 + 1 + 1)2 + 2× (32 + 32 + 12 + 12 + 12 + 12)

that is, 107 admits a 2-squared partition and 144 admits a 6-squared partition.
As mentioned above, the final product of the Path Procedure consists of integers

m ∈ (1, n2) that admit a partition into distinct odd parts greater than one. In Godinho-
Santos[5], it is proved that these integers m also admit t-squared partitions. In this
section, we give a complete characterization of these special integers, proving that m
admits a t-squared partition if and only if m ≡ 0 or 3 (mod 4), with the exception that
the reciprocal case is not true for 12 values of m, which will be presented as follows.

Lemma 3.1. Let m ∈ N and suppose that m admits a t-squared partition. Then we
can find a, b ∈ N such that m = b2 + 2a with

a ≡ b (mod 2) and b ≤ a ≤ b2 ≤ ta.

Proof. The fact that m = b2 + 2a follows from (3.1), and since c2j ≡ cj (mod 2), for
j = 1, 2, . . . , t, we have that a ≡ b (mod 2). Now we focus our attention in proving the
inequalities. It is easy to see that a positive integer m admits a t-squared partition if m
can be written as m = b2 + 2a, and there is a solution for the system{

b = x1 + · · ·+ xt,
a = x2

1 + · · ·+ x2
t ,

(3.2)

with x1, . . . , xt ∈ N. Since these are all natural numbers it follows easily that b2 ≥ a ≥ b.
The last inequality follows from the Cauchy-Schwarz inequality since

b2 = (
t∑

i=1

xi)
2 = (

t∑
i=1

xi · 1)2 ≤ (
t∑

i=1

x2
i )(

t∑
i=1

12) = ta.

Corollary 3.2. Let m ∈ N. The integer m admits a t-squared partition only if m ≡
0 or 3 (mod 4).

Proof. It follows from Lemma 3.1 that m = b2+2a, with a ≡ b (mod 2). Now it follows
from this congruence condition that m ̸≡ 1 or 2 (mod 4).

For some special values ofm, and also for small values of t is easy to obtain t-squared
partitions, as can be seen in the next two results.
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Lemma 3.3. Let m be a positive integer. If m + 1 = d2, for some d ∈ N, then m
admits a (d− 1)-squared partition.

Proof. Let us write m = d2 − 1 = (d − 1)2 + 2(d − 1). Now take x1 = · · · = xd−1 = 1
as a solution for the system (3.2), with t = d− 1 and a = b = d− 1.

Lemma 3.4. Let m be a positive integer written as m = b2 + 2a. Then

(a) m admits a 1-squared partition if, and only if, a = b2.

(b) m admits a 2-squared partition if, and only if, 2a− b2 is a square smaller than b2.

Proof. The case (a) is immediate, for the only possibility is to write m = b2 + 2b2. Let
us proceed to the other case, considering the system (3.2) with t = 2. Observe that
2a− b2 = 2(x2

1 + x2
2)− (x1 + x2)

2 = (x1 − x2)
2. Thus if m admits a 2-squared partition,

then 2a − b2 = (x1 − x2)
2. Since x1, x2 ∈ N, we have that |x1 − x2| < x1 + x2 = b.

Conversely, consider 2a − b2 = d2 < b2 and take x1 = (b + d)/2 and x2 = (b − d)/2.
Since b ≡ d (mod 2) and b > d, we have that x1 and x2 are positive integers.

Next we present some combinatorial lemmas that will be helpful for our study of
numbers m admitting t-squared partitions.

Lemma 3.5. Let c1, c2, . . . , cs ∈ N, with s ≥ 2, and assume c1 ≥ · · · ≥ cs. Then

c21 + c22 + · · · c2s ≤

(
(

s∑
i=1

ci)− 1

)2

+ 1.

Proof. The proof is done by induction on s. Let s = 2, then

(c1 + c2 − 1)2 + 1 = (c1 + c2)
2 − 2(c1 + c2) + 2 ≥ c21 + c22,

since c1, c2 ∈ N. Now, let b = c1 + c2 + · · ·+ cs. By the induction hypothesis, we have

c21 + · · ·+ c2s−1 + c2s ≤ ((b− cs)− 1)2 + 1 + c2s ≤
≤ (b− 1)2 + 1− 2cs((b− 1)− cs) ≤ (b− 1)2 + 1,

since b > cs.

Lemma 3.6. Let c1, c2, . . . , cs ∈ N, with s ≥ 2, and assume that they are not all equal.
Then

2
s∑

1=i<j

cicj + (s− 1) ≤ (s− 1)
s∑

i=1

c2i . (3.3)
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Proof. The proof is done by induction on s. The case s = 2 follows from (c1− c2)
2 ≥ 1.

Let us assume that there is only one cj different from the others, say c1 = · · · = cs−1 ̸=
cs. In this case

s∑
1=i<j

cicj = (
s−2∑
i=1

i)c21 + (s− 1)c1cs,

hence the LHS of (3.3) is equal to (s− 1){(s− 2)c21 + 2c1cs + 1} and the RHS of (3.3)
is equal to (s− 1){(s− 1)c21 + c2s}. Now it is simple to see that the inequality in (3.3)
holds since (c1 − cs)

2 ≥ 1.
Let us assume c1 ≥ · · · ≥ cs and write cj = cs + δj, for j = 1, . . . , s − 1. Hence we

have

2
s∑

1=i<j

cicj = s(s− 1)c2s + 2(s− 1)cs(
s−1∑
j=1

δj) + 2
s−1∑

1=i<j

δiδj, (3.4)

and

(s− 1)
s∑

i=1

c2i = s(s− 1)c2s + 2(s− 1)cs(
s−1∑
j=1

δj) + (s− 1)
s−1∑
i=1

δ2i . (3.5)

Since the δj’s are not all equal (for there are at least two distinct cj’s), the result follows
from the induction hypothesis, since

2
s−1∑

1=i<j

δiδj + (s− 2) ≤ (s− 2)
s−1∑
i=1

δ2i < (s− 1)
s−1∑
i=1

δ2i ,

(see (3.4) and (3.5) above), completing the proof.

Theorem 3.7. Let m ∈ N. Then m admits a t-squared partition only if m can be
written as m = b2 + 2a, with a, b ∈ N and

(i)

⌈√
m

3

⌉
≤ b ≤ ⌊

√
m+ 1 ⌋ − 1.

(ii) (

⌈
b

t

⌉
)2 + (t− 1)(

⌊
b

t

⌋
)2 ≤ a ≤ (b− 1)2 + 1.

Proof. Let m = b2+2a, and c1, . . . , ct ∈ N be a solution for (3.2). From the inequalities
stated in Lemma 3.1 we have

b2 + 2b ≤ m ≤ 3b2,

ReviSeM, Year 2024, No. 3, 08–24 14



Godinho, H.

which gives (i), since b2 + 2b = (b + 1)2 − 1. For the item (ii), the inequality on the
RHS follows directly from Lemma 3.5. Now observe that

(⌈b
t
⌉)2 + (t− 1)(⌊b

t
⌋)2 =


b2

t
, if b ≡ 0 (mod t)

((b− r) + 1)2 + (t− 1)

t
, if b ≡ r ̸≡ 0 (mod t).

In any case we have, (taking r = 1)

(⌈b
t
⌉)2 + (t− 1)(⌊b

t
⌋)2 ≤ b2 + (t− 1)

t
.

By Lemma 3.6, we have

b2 + (t− 1) ≤ t
t∑

i=1

c2i = ta,

concluding the proof.

Next, we present an elementary lemma that will be helpful in proving the main
theorem of this section.

Lemma 3.8. Let m ∈ N, m ≥ 5 and let

c(m) =

⌈√
3m− 10

5

⌉
and d(m) =

⌊√
7m

9

⌋
. (3.6)

If m ≥ 290 then d(m) ≥ c(m) + 1.

Proof. Observe that

H(m) =

√
7m

9
−
√

3m− 10

5
> (

√
7

9
−
√

3

5
)
√
m >

√
m

10
,

hence H(m) is an increasing function. Since H(350) > 2, consequently we have d(m) ≥
c(m)+ 1, for m ≥ 350. For the other values of m in the interval [290 , 349], a computer
search verified that d(m)− c(m) ≥ 1, in all of these cases.

Our goal is to prove that any m ∈ N, m ≡ 0 or 3 (mod 4), admits a t-squared
partition, provided m is not one of the 12 exceptional values. For this purpose we need
the following theorem proved in Pall[10].
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Theorem 3.9 (Theorem 4, [10]). Let a, b ∈ N, and assume that a ≡ b (mod 2) and
7a ≥ b2 ≥ 3a−5. Then the system (3.2), with t = 7, has a solution c1, . . . , c7 ∈ N∪{0}.

Theorem 3.10. Let m ∈ N such that m ≡ 0 or 3 (mod 4) then m always admits a
t-squared partition, unless

m ∈ {4, 7, 11, 16, 20, 23, 31, 40, 44, 55, 68, 95}.

Proof. Letm ≡ 0 or 3(mod 4), and for each value ofm, consider the interval [c(m), d(m)],
with c(m), d(m) given in (3.6). If this interval contains at least two consecutive integers,
then we can choose b within this interval such that b ≡ m (mod 2). Now, it follows
from (3.6) that

3

5
m− 2 ≤ b2 ≤ 7

9
m, (3.7)

Let a = (m− b2)/2, and recall that m ≡ 0 or 3 (mod 4) and m ≡ b (mod 2). If m ≡ 0
(mod 4), then we also have b2 ≡ 0 (mod 4), and if m ≡ 3 (mod 4), then b is odd, and
b2 ≡ 1 (mod 4). In any case we have a ≡ b (mod 2).

It follows from (3.7) that a and b satisfy the following inequalites

9b2 ≤ 7m =⇒ 2b2 ≤ 7(m− b2) =⇒ b2 ≤ 7a,

and
3m− 10 < 5b2 =⇒ 3(m− b2)− 10 ≤ 2b2 =⇒ 3a− 5 ≤ b2.

Hence, for this choice of a and b there exist a solution c1, . . . , c7 ∈ N∪{0} for the system
(3.2) with t = 7, according to Theorem ??. With no loss in generality, let us assume
c1 ≥ · · · ≥ c7 ≥ 0, and since b ̸= 0, there must be an t such that c1 ≥ · · · ≥ ct ≥ 1 and
ct+1 = · · · = c7 = 0. Therefore, m admits a t-squared partition, as desired.

It follows from Lemma 3.8 that the interval [c(m), d(m)] has at least two elements,
provided m ≥ 290. A simple computer search in the interval [3, 289], considering
m ≡ 0 or 3 (mod 4), reveals that for the values of m listed below, we also have d(m) ≥
c(m) + 1:

63 83 84 107 108 131 132 135 136 156 159 160 163 164
167 168 187 188 191 192 195 196 199 200 203 204 219 220
223 224 227 228 231 232 235 236 239 240 243 252 255 256
259 260 263 264 267 268 271 272 275 276 279 280 283 284

For each of the remaining 88 integers m in the interval [3, 289] such that m ≡ 0 or 3
(mod 4), we proceed as follows (see Theorem 3.7):
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1. Determine R =
⌈√

m
3

⌉
and S = ⌊

√
m+ 1 ⌋;

2. Determine the values of b such that R ≤ b ≤ S − 1 and b ≡ m (mod 2);

3. Determine a such that m = b2 + 2a;

4. Find a solution for the system below assuming xj ≤
√
a:{

b = x1 + · · ·+ xt

a = x2
1 + · · ·+ x2

t .

The values of m in this interval are small, and it is relatively simple to determine which
of these values admit a t-squared partition. Below, we present a short list with the
twelve largest values of m in this interval and their respective t-squared partitions:

288 = (1 + 1 + · · ·+ 1)2 + 2×(12 + 12 + · · ·+ 12) = 162 + 2×16
287 = (7 + 2 + 2 + 1 + 1)2 + 2×(72 + 22 + 22 + 12 + 12) = 133 + 2×59
251 = (7 + 4)2 + 2×(72 + 42) = 112 + 2×65
248 = (5 + 5 + 1 + 1)2 + 2×(52 + 52 + 12 + 12) = 122 + 2×52
247 = (4 + 4 + 2 + 1 + 1 + 1)2 + 2×(42 + 42 + 22 + 12 + 12 + 12) = 132 + 2×39
244 = (6 + 3 + 2 + 1)2 + 2×(62 + 32 + 22 + 12) = 122 + 2×50
216 = (7 + 3)2 + 2×(72 + 32) = 102 + 2×58
215 = (6 + 3 + 1 + 1)2 + 2×(62 + 32 + 12 + 12) = 112 + 2×47
212 = (4 + 3 + 2 + 2 + 1)2 + 2×(42 + 32 + 22 + 22 + 12) = 122 + 2×34
211 = (6 + 2 + 2 + 1)2 + 2×(62 + 22 + 22 + 12) = 111 + 2×45
208 = (4 + 3 + 2 + 1 + 1 + 1)2 + 2×(42 + 32 + 22 + 12 + 12 + 12) = 122 + 2×32
207 = (6 + 2 + 1 + 1 + 1)2 + 2×(62 + 22 + 11 + 12 + 12) = 112 + 2×43

Note that the remaining 76 values of m, which are smaller than 207 and not included
among the 56 values listed above, fall within the interval [3,184], and for these values
we have found t-squared partitions, unless m is in the set

{4, 7, 11, 16, 20, 23, 31, 40, 44, 55, 68, 95}.

Definition 3.11. Let m ∈ N and define f(m), the frequency of m, as the number of
times m can be represented by a t-squared partition.
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Corollary 3.12. Let m ∈ N, such that m ≡ 0 or 3 (mod 4). Then f(m) is equal to
the number of non-negative solutions (c1, c2, . . . , cb), assuming c1 ≥ c2 ≥ · · · ≥ cb ≥ 0,
of systems of the type {

b = x1 + · · ·+ xb

a = x2
1 + · · ·+ x2

b ,
(3.8)

for any pair a, b such that a ≡ b (mod 2) and m = b2 +2a. Moreover, f(m) ≥ 1 unless
m ∈ {4, 7, 11, 16, 20, 23, 31, 40, 44, 55, 68, 95}.

Proof. Given a non-negative solution (c1, c2, . . . , cb) with c1 ≥ c2 ≥ · · · ≥ cb ≥ 0, we
may assume that for some t ≥ 1 we have ct ̸= 0 and ct+1 = · · · = cb = 0. This
shows that m admits a t-squared partition and for any distinct non-negative solution
(c1, c2, . . . , cb) of (3.8), assuming c1 ≥ c2 ≥ · · · ≥ cb ≥ 0, we have a distinct t-squared
partition of m. The final statement is a direct consequence of Theorem 3.10.

Example 3.13. It is not a simple task to determine the frequency of a number, for
it involves calculating the number of positive solutions of the system (3.8). But for
small values of m it can be easily done, for example, a simple computation shows that
f(107) = 2 and f(144) = 4. Below we have a list of the distinct t-squared partitions of
107 and 144.

107 = (5 + 2)2 + 2× (52 + 22)
107 = (2 + 2 + 1 + 1 + 1 + 1 + 1)2 + 2× (22 + 22 + 12 + 12 + 12 + 12 + 12)

144 = (6 + 2)2 + 2× (62 + 22)
144 = (3 + 2 + 2 + 2 + 1)2 + 2× (32 + 22 + 22 + 22 + 12)
144 = (3 + 3 + 1 + 1 + 1 + 1)2 + 2× (32 + 32 + 12 + 12 + 12 + 12)
144 = (4 + 1 + 1 + 1 + 1 + 1 + 1)2 + 2× (42 + 12 + 12 + 12 + 12 + 12 + 12)

For the interested reader we recommend the papers of Kloosterman[7] and Pall[10] where
conditions for the existence of integer solutions and formulas for the number of integer
solutions for the system (3.8) are presented.

4 The Special Set Un(m,β, δ)

Let m ∈ N, m ≡ 0 or 3 (mod 4) and m ̸∈ {4, 7, 11, 16, 20, 23, 31, 40, 44, 55, 68, 95}, and
let us define A(m) as the set of all non-negative solutions x⃗ of the system (3.8) such
that

x⃗ = (c1, c2, . . . , cb), and c1 ≥ c2 ≥ · · · ≥ cb ≥ 0,
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for any pair a, b such that a ≡ b (mod 2) and m = b2 + 2a. According to Corollary
3.12, we have |A(m)| = f(m) ≥ 1. For x⃗ ∈ A(m), define

• w(x⃗) as the number of nonzero coordinates of x⃗;

• µ(x⃗) as the sum of the coordinates of x⃗;

• γ(x⃗) as the biggest coordinate of x⃗.

Hence if x⃗ = (c1, c2, . . . , cb) ∈ A(m) and w = w(x⃗) then

c1 ≥ c2 ≥ · · · ≥ cw ≥ 1, and cw+1 = · · · = cb = 0,

µ(x⃗) =
b∑

i=1

ci = c1 + · · ·+ cw and γ(x⃗) = c1.
(4.1)

From this point onwards, we will represent the vector x⃗ ∈ A(m) as x⃗ = (c1, . . . , cw(x⃗)).
For fixed n ∈ N, and β, δ ∈ N∪{0}, with n > β, we define Un(m,β, δ) as the subset

of A(m) such that, if x⃗ ∈ Un(m,β, δ) then

µ(x⃗) + γ(x⃗) + δ ≤ n, cw(x⃗) ≥ β, and cj ≥ cj+1 + δ, for 1 ≤ j < w(x⃗). (4.2)

Lemma 4.1. Let n ∈ N, and β, δ ∈ N ∪ {0}, with n > β. If m ≥ n2 then

Un(m,β, δ) = ∅

.

Proof. Suppose m ≥ n2 and let x⃗ ∈ Un(m,β, δ). Writing x⃗ = (c1, c2, . . . , cw), we have

m = (c1 + c2 + · · ·+ cw)
2 + 2(c21 + c22 + · · ·+ c2w). (4.3)

Since x⃗ ∈ Un(m,β, δ), we must have (c1 + c2 + · · · + cw) + c1 + δ ≤ n, (see (4.2)) and
then

(c1 + c2 + · · ·+ cw)
2 + 2(c1 + δ)(c1 + c2 + · · ·+ cw) + (c1 + δ)2 ≤ n2.

Since
(c1 + c2 + · · ·+ cw)c1 ≥ (c21 + c22 + · · ·+ c2w)

we must have (see (4.3)) m < n2, a contradiction. Therefore the set Un(m,β, δ) must
be empty.

Corollary 4.2. Let n ∈ N, and β, δ ∈ N ∪ {0}, with n > β. The set Un(m,β, δ) is
empty if either

m ≡ 1 or 2 (mod 4), m ∈ {4, 7, 11, 16, 20, 23, 31, 40, 44, 55, 68, 95}, or m ≥ n2.
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Proof. These results follow directly from Corollaries 3.2 and 3.12, and Lemma 4.1.

Lemma 4.3. Let n ∈ N, and β, δ ∈ N∪{0}, with n > β. If m1,m2 ∈ N, with m1 ̸= m2

then Un(m1, β, δ) ∩ Un(m2, β, δ) = ∅.

Proof. We may assume that neither m1 nor m2 satisfies the conditions stated in Corol-
lary 4.2. Suppose that m1 = b21+2a1, m2 = b22+2a2 and x⃗ ∈ Un(m1, β, δ)∩Un(m2, β, δ).
But this implies that x⃗ = (c1, . . . , cw) and{

b1 = c1 + · · ·+ cw = b2
a1 = c21 + · · ·+ c2w = a2,

which is impossivel since m1 ̸= m2.

The next theorem establishes an 1-1 correspondence between subsets of A(m) and
subsets of M(n, β, δ) (see Section 2 above).

Theorem 4.4. Let n ∈ N and β, δ ∈ N ∪ {0}, with n > β. There exits an 1-

1 correspondence between vectors x⃗ in
⋃n2−1

m=1 Un(m,β, δ) and two-line matrices M in⋃n
j=1M0(j, β, δ).

Proof. Let m ∈ (1, n2 − 1) such that Un(m,β, δ) ̸= ∅ (see Corollary 4.2). According to
(4.1) and (4.2), for any x⃗ ∈ Un(m,β, δ), written as x⃗ = (c1, c2, . . . , cw) we have

cw = β + dw+1, cw−1 = cw + δ + dw, . . . , c1 = c2 + δ + d2, (4.4)

with d2, d3, . . . , dw ∈ N∪{0}. Let us denote cw+1 = β and associate to the vector x⃗ the
2× (w + 1) matrix (see (4.4))

M(x⃗) =

(
(c1 + δ) (c2 + δ) · · · (cw + δ) cw+1

0 d2 · · · dw dw+1

)
.

Hence we have (see (4.4))

cw+1 = β, cw + δ = cw+1 + dw+1 + δ, and (cj + δ) = (cj+1 + δ) + dj+1 + δ,

for j = 1, 2, . . . , w − 1. Since (see (4.4))

d2 + · · ·+ dw+1 = c1 − (w − 1)δ − β,

we have (see (4.2))

ℓ(M(x⃗)) =
∑w

i=1(ci + δ) + β +
∑w+1

j=2 dj

= 2c1 + c2 + · · ·+ cw + δ = γ(x⃗) + µ(x⃗) + δ ≤ n.
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Hence (see (2.5))

M(x⃗) ∈M0(ℓx, β, δ) ⊂
n⋃

j=1

M0(j, β, δ).

Now take a matrix M ∈M0(r, β, δ), with r ≤ n,

M =

(
a1 a2 · · · as as+1

0 b2 · · · bs bs+1

)
.

According to (2.2) we have

as+1 = β, and aj = aj+1 + bj+1 + δ ≥ aj+1 + δ > δ, for j = 1, 2, . . . , s. (4.5)

Let us define
x⃗M = (c1, . . . , cs) = ((a1 − δ), . . . , (as − δ)),

hence, c1 ≥ c2 ≥ · · · ≥ cs (see (4.5)) and, for j = 1, 2, . . . , s− 1,

cj = aj − δ = aj+1 + dj+1 = (aj+1 − δ) + dj+1 + δ ≥ cj+1 + δ, and
cs = as − δ = cs+1 + dw+1 = β + dw+1 ≥ β.

It follows from Lemma 2.1(iii) and Definition 2.3 that

ℓ(M) = a1 + (
∑s

j=1 aj)− sδ

= (a1 − δ) + (a1 − δ) + (a2 − δ) + · · ·+ (as − δ) + δ
= c1 + c1 + · · ·+ cs + δ
= µ(x⃗) + γ(x⃗) + δ = r ≤ n.

(4.6)

Now define
mM = (c1 + · · ·+ cs)

2 + 2(c21 + · · ·+ c2s). (4.7)

We want to prove that x⃗M ∈ U(mM , β, δ), therefore, the only thing left to be proved is
that mM ∈ (1, n2 − 1) (see (4.2)). Observe that (see (4.6))

n2 ≥ ℓ(M)2 = (µ(x⃗M) + γ(x⃗) + δ)2,
= (c1 + · · ·+ cs)

2 + 2(c1 + δ)(c1 + · · ·+ cs) + (c1 + δ)2

> (c1 + · · ·+ cs)
2 + 2c1(c1 + · · ·+ cs)

≥ (c1 + · · ·+ cs)
2 + 2(c21 + · · ·+ c2s) = mM ,

which completes the proof.
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Example 4.5. At this point, we would like to present an example illustrating how these
correspondences are applied. We will start with the t-squared partitions of 107, and
conclude with the corresponding partitions of 12. From Example 3.13, we have the
following representations of 107:

107 = (5 + 2)2 + 2× (52 + 22)
107 = (2 + 2 + 1 + 1 + 1 + 1 + 1)2 + 2× (22 + 22 + 12 + 12 + 12 + 12 + 12).

Let x⃗1 = (5, 2) and x⃗2 = (2, 2, 1, 1, 1, 1, 1) be vectors of A(107). Since

µ(x⃗1) + γ(x⃗1) = 5+ 5+ 2 = 12 and µ(x⃗2) + γ(x⃗2) = 2+ 2+ 2+ 1+ 1+ 1+ 1+ 1 = 11,

we have that x⃗1, x⃗2 ∈ U12(107, 1, 0).
From the correpondence described in the proof of Theorem 4.4 we obtain the matrices

M(x⃗1) =

(
5 2 1
0 3 1

)
∈M0(12, 1, 0),

and

M(x⃗2) =

(
2 2 1 1 1 1 1 1
0 0 1 0 0 0 0 0

)
∈M0(11, 1, 0).

To this last matrix we apply the correspondence described in the proof of Lemma 2.4 to
obtain the matrix

M2 =

(
2 2 1 1 1 1 1 1
1 0 1 0 0 0 0 0

)
∈M(12, 1, 0).

Finally, from the correspondence between two-line matrices and partitions (see (2.6))
we have the following partitions of 12.

12 = 5 + 5 + 2,
12 = 3 + 2 + 2 + 1 + 1 + 1 + 1 + 1.

Corollary 4.6. Under the same hypothesis of Theorem 4.4 we have

n2−1∑
m=1

|Un(m,β, δ)| =
n∑

j=1

|M0(j, β, δ)|.

Proof. It directly follows from Theorem 4.4, Lemma 4.3, and Remark 2.2 that they
collectively establish a one-to-one correspondence between unions of disjoint sets.
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5 Main Theorem

Now we are ready to state and prove our main Theorem presenting new formulas for
the number of unrestricted partions of n, partitions of n into distinct parts, and the
partitions of n arising from the two classic Rogers-Ramanujan Identities.

Theorem 5.1. Let n be a natural number. Then

(a) The number of unrestricted partitions of n is equal to
n2−1∑
m=1

|Un(m, 1, 0)| + 1.

(b) The number of partitions of n into distinct parts is equal to
n2−1∑
m=1

|Un(m, 1, 1)| + 1.

(c) The number of partitions of n where the difference between two parts is at least

two is equal to
n2−1∑
m=1

|Un(m, 2, 1)| + 1.

(d) The number of partitions of n where the difference between two parts is at least

two and each part is greater than one is equal to
n2−1∑
m=1

|Un(m, 2, 2)| + 1.

Proof. By the definition of M(n, β, δ), we have that the number of unrestricted parti-
tions of n is equal to |M(n, 1, 0)|, the number of partitions of n into distinct parts is
equal to |M(n, 1, 1)|, the number of partitions of n where the difference between two
parts is at least two is equal to |M(n, 2, 1)|, and the number of partitions of n where the
difference between two parts is at least two and each part is greater than one is equal
to |M(n, 2, 2)|. Now the conclusion follows from Lemma 2.4 and Corollary 4.6, since

|M(n, β, δ)| =
n∑

j=1

|M0(j, β, δ)|+ 1 =
n2−1∑
m=1

|Un(m,β, δ)|+ 1.
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