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Abstract

In the work we apply the Z-transform to the recurrence of Cauchy convolution type,
satisfied by several arithmetic functions, to obtain its solution in terms of the complete
Bell polynomials. One of the most important arithmetic function used here is σ1(n),
the function that sum all positive divisors of n. Our main result can be applied to find
a closed formula for the number of k-colored partitions, sum of triangular numbers and
more.
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1 Introduction and Background

In this paper, our basic aim is to obtain recurrence relations with the structure of a
Cauchy convolution1 as follows.

nfk(n) = k
n∑

j=1

g(j)fk(n− j), k ≥ 1, n ≥ 0 (1.1)

1More detailed information about the Cauchy convolution can be found in [44].
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where fk(0) = 1 ∀ k and g(0) = 0. In Section 2 we show that the Z−transform as used
in [11, 9, 14], allows to obtain the following solution of the recurrence (1.1) in terms of
the complete Bell polynomials (as defined in [13, 12, 8, 16, 17, 18, 41, 42]):

fk(n) =
1

n!
Bn

(
0!kg(1), 1!kg(2), 2!kg(3), . . . , (n− 1)!kg(n)

)
. (1.2)

In order to do this we recall some concepts. Still in Section 2, we show some results
associated to colored integer partitions and compositions2. A partition of an integer n
is an unordered collection of integers (λ1, λ2, . . . , λs) such that λ1 + λ2 + . . . + λs = n.
We agree that λ1 ≤ λ2 ≤ . . . ≤ λs, and each λi is called a part of the partition. A k−
colored partition of n is an integer partition of n in which each part receives one color
of k available colors. We denote by pk(n) the number of k− colored integer partitions
of n. For example p2(4) = 20, and these partitions are: 4, 4, 3 + 1, 3 + 1, 3 + 1, 3 + 1,
2 + 2, 2 + 2, 2 + 2, 2 + 1 + 1, 2 + 1 + 1, 2 + 1 + 1, 2 + 1 + 1, 2 + 1 + 1, 2 + 1 + 1,
1 + 1 + 1 + 1, 1 + 1 + 1 + 1, 1 + 1 + 1 + 1, 1 + 1 + 1 + 1 and 1 + 1 + 1 + 1.

The generating function for the sequence (pk(n)) is given by the next infinite prod-
uct.

∞∑
n=0

pk(n)q
n =

∞∏
n=1

1

(1− qn)k
,

where pk(0) = 1.
The generating function for the number of partitions of n whose parts are distinct

is given by:
∞∑
n=0

pD(n)q
n =

∞∏
n=1

(1 + qn),

where pD(n) denotes the number of this class of partitions for a positive integer n.
A composition of an integer n is a partition in which the order of the parts matters.

For example the compositions of n = 3 are: (1, 1, 1), (2, 1), (1, 2) and 3. We denote the
set of compositions of n by Cn. The number of compositions of n is 2n−1.

The exponential Bell partition polynomial, as defined in chapter 11 of Charalam-
bides [7], is given by the sum

Bn(x1, x2, . . . , xn) =
∑

k1+2k2+...+nkn=n
ki≥0

n!

k1(1!)k1k2!(2!)k2 · · · kn!(n!)kn
xk1
1 xk2

2 · · ·xkn
n .

2see [22, 23, 1, 5, 6]
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The generating function for the exponential Bell partition polynomial is

∞∑
n=0

Bn(x1, . . . , xn)
tn

n!
= exp

(
∞∑
j=1

xj
tj

j!

)
.

One our most important result is to show how to find closed formulas for the number of
k-colored partitions, the number of representations of n as a sum of squares and further,
using Bell polynomials. In order to to this, the sigma function, has great importance
for our purposes. For a complex number j, the arithmetical function σj is defined by:

σj(n) =
∑
d|n

dj.

In the next section we will obtain the next result ([1]) as a particularly case:

pk(n) =
n∑

l=1

kl

l!

 ∑
(ω1,...,ωl)∈Cn

σ1(ω1)σ1(ω2) · · ·σ1(ωl)

ω1ω2 · · ·ωl

 ,

for n > 0.

2 Main result and applications

We start this section with our main result.

Theorem 2.1. If F (z) and G(z) are the Z-transforms of the sequences
{fk(0), fk(1), fk(2), . . .} and {0, kg(1), . . .}, respectively, then

fk(n) =
1

n!
Bn

(
0!kg(1), 1!kg(2), 2!kg(3), . . . , (n− 1)!kg(n)

)
.

Proof. Since

F (z) = 1 +
fk(1)

z
+

fk(2)

z2
+ · · · , G(z) =

kg(1)

z
+

kg(2)

z2
+ · · · , (2.1)

then (1.1) gives the differential equation:

d

dz
F = −G(z)F (z)

z
, (2.2)

and integrating both sides of (2.2), we have:

Ln(F ) =
kg(1)

z
+

kg(2)

2z2
+

kg(3)

3z3
+ · · · , (2.3)
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that is:

F (z) :=
∞∑
n=0

fk(n)
1

zn
= exp

(
∞∑
j=1

kg(j)

j

1

zj

)
. (2.4)

On the other hand, we have the generating function of the complete Bell polynomials:

∞∑
n=0

1

n!
Bn (x1, x2, . . . , xn)

1

zn
= exp

(
∞∑
j=1

xj

j!

1

zj

)
(2.5)

whose comparison with (2.4) implies (1.2).

The equation (1.2) shows that fk(n) is a polynomial in the variable k of degree n:

fk(n) = g(n, n)kn + g(n, n− 1)kn−1 + · · ·+ g(n, 2)k2 + g(n, 1)k =
n∑

j=1

g(n, j)kj. (2.6)

From (2.4):

∞∑
n=0

fk(n)u
n =

∞∑
j=0

kj

j!

(
g(1)

1
u+

g(2)

2
u2 +

g(3)

3
u3 + · · ·

)j

, (2.7)

so, it is not difficult to see that (2.6) and (2.7) imply the interesting expression:

g(n, j) =
1

j!

∑
(ω1,...,ωj)∈Cn

g (ω1) · · · g (ωj)

ω1 · · ·ωj

, j = 1, 2, . . . , n, (2.8)

for the coefficients of the polynomial (2.6) in terms of the set Cn of compositions of n
and the corresponding values g (ωr); hence from (1.2), (2.6) and (2.8):

Bn

(
0!kg(1), 1!kg(2), 2!kg(3), . . . , (n− 1)!kg(n)

)
=

n∑
j=1

n!

j!
kj

∑
(ω1,...,ωj)∈Cn

g (ω1) · · · g (ωj)

ω1 · · ·ωj

.

(2.9)
For example, this property (2.9) with k = 1 and g(m) = m gives an identity for the
Lah numbers [15, 10, 4, 24, 19, 20, 25]:

Bn

(
1!, 2!, 3!, . . . , n!

)
=

n∑
j=1

n!

j!

(
n− 1

j − 1

)
=

n∑
j=1

L[j]
n . (2.10)
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We know the following recurrence relations [26, 27, 21, 28, 29, 3, 37, 32] with the
structure (1.1):

npk(n) = k
n∑

j=1

σ1(j)pk(n− j), (2.11)

nrk(n) = k
n∑

j=1

2(−1)j−1jD(j)rk(n− j), D(j) =
∑
odddlj

1

d
, (2.12)

ntk(n) = k
n∑

j=1

T (j)tk(n− j), T (j) =
∑
dlj

(−1)d−1d, (2.13)

where σ1 is the sum of divisors function, [44, 2, 31, 40, 43], rk(n), and tk(n) are the
number of representations of n as a sum of squares and as a sum of triangular numbers,
respectively [3, 46, 30, 35]. Then from (1.2), (2.6) and (2.8):

pk(n) =
1

n!
Bn

(
0!kσ1(1), 1!kσ1(2), . . . , (n−1)!kσ1(n)

)
=

n∑
j=1

kj

j!

∑
(ω1,...,ωj)∈Cn

σ1 (ω1) · · ·σ1 (ωj)

ω1 · · ·ωj

,

(2.14)

rk(n) =
1

n!
Bn

(
2kD(1),−4kD(2), 12kD(3), . . . , 2(−1)n−1n!kD(n)

)
,

=
n∑

j=1

(−1)n−j2j

j!
kj

∑
(ω1,...,ωj)∈Cn

D (ω1) · · ·D (ωj) ,
(2.15)

tk(n) =
1

n!
Bn

(
0!kT (1), 1!kT (2), . . . , (n−1)!kT (n)

)
=

n∑
j=1

kj

j!

∑
(ω1,...,ωj)ϵCn

T (ω1) · · ·T (ωj)

ω1 · · ·ωj

,

(2.16)
thus, this polynomial (2.14) recently obtained by Alegri [1] is a particular case of our
general results.

For an additional application, Robbins [38, 39] deduced the recurrence relation:

npD(n) =
n∑

j=1

σO(j)pD(n− j), σO(n) =
∑

odd d|n

d =
∑
d|n

(−1)d−1n

d
, (2.17)

where pD(n) is the number of partitions of n using only distinct parts, and σO(n) is
sum of the odd positive divisors of n. From ((1.2)), with k = 1, we get:

pD(n) =
1

n!
Bn

(
0!σO(1), 1!σO(2), 2!σO(3), . . . , (n− 1)!σO(n)

)
. (2.18)
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Remark 2.2. We know the identity Bn

(
0!, 1!, 2!, . . . , (n − 1)!

)
= n , then (2.9) with

k = g(m) = 1 gives a property satisfied by the set of compositions of n :

n∑
j=1

1

j!

∑
(ω1,...,ωj)∈Cn

1

ω1 · · ·ωj

= 1, n ≥ 1. (2.19)

Remark 2.3. The Bell numbers (see [45, 33, 34] ) can be written in the form B(n) =
Bn(1, 1, . . . , 1), thus (2.9) with k = 1 and g(m) = 1

(m−1)!
implies an alternative manner

to define these numbers:

B(n) = n!
n∑

j=1

1

j!

∑
(ω1,...,ωj)∈Cn

1

ω1!ω2! · · ·ωj!
. (2.20)

Using the definition of the complete Bell polynomials we can state the next identity.

Corollary 2.4. For n > 0, and xi = (i− 1)!kσ1(i), 1 ≤ i ≤ n, we have

B(n)(x1, x2, . . . , xn)

n!
= pk(n)

=
∑

k1+2k2+...+nkn=n
ki≥0

kk1+k2+...+kn(σ1(1))
k1(σ1(2))

k2 · · · (σ1(n))
kn

(2!)k2−k3(3!)k3−k4 · · · ((n− 1)!)kn−1−kn(n!)knk1!k2! · · · kn!
.

3 Conclusion

Just as finding formulas for colored partitions using the Bell polynomial was possible,
a reasonable question is whether there is a way to find a formula for the number of
other classes of partitions different from those explored here. An example is plane
partitions (sequence A000219 on Oeis[36]), whose generating function for the number
of such partitions is given by the following product:

y =
∞∏
n=1

1

(1− qn)n
,

where q ∈ C, |q| < 1.
We believe that results involving Bell polynomials and many others can be obtained

by interested mathematicians as done here.
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Bol. do Inst. dos Actuários Portugueses 9 (1954) 7-15.
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