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Abstract

We employ the Z-transform to study a result of Merca involving the partition function
p(n) and Euler’s totient. Besides, we obtain an identity valid for pentagonal numbers
and an arbitrary prime number.
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1 Introduction

In [1], Merca obtained the next equation:

n∑
k=1

kp(n− k) =
n∑

k=1

ϕ(k)Sn,k, (1.1)

which is a connection between the partition and Euler totient functions,1 where Sn,k is
the number of k′s in all partitions of n. Similarly in [1], the authors found:

p(n) =
n+1∑
k=1

µ(k)Sn+1,k, (1.2)

1More information about integer partitions and Euler totient function can be found in [3, 4, 5, 6, 2].
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with the participation of the Möbius function 2. The relations (1.1) and (1.2) provide
remarkable expressions connecting a function of multiplicative number theory with one
of additive number theory.

Besides, Merca [1], established the result:

n∑
k=1

g(k)p(n− k) =
n∑

k=1

f(k)Sn,k, (1.3)

for an arbitrary arithmetic function f and g(n) =
∑

d|n f(d). Here we use the Z-

transform to show that (1.1) and (1.3) allows to deduce the identities:

p(n) =
n+1∑
k=1

ϕ(k)(Sn+1,k − 2Sn,k + Sn−1,k), (1.4)

and

p∑
r=j

ap−rSr,j =

{
1, if j = 1, p;

0, if 2 ≤ j ≤ p− 1,
(1.5)

for p = 2, 3, 5, 7, 11, . . ., where:

aj =

{
0, if j ̸= m(3m+1)

2
;

(−1)m, if j = m(3m+1)
2

,
(1.6)

for m ∈ Z.
One may note that (aj)j∈Z satisfy the Euler pentagonal number theorem, as follows.

∞∏
n=1

(1− xn) =
∞∑

n=−∞

(−1)kxk(3k−1)/2.

The inverse of the previous infinity product gives the generating function for the
sequence (p(n))n∈N∪{0}.

The Z-transform is a mathematical tool used in discrete-time signal processing and
control theory. It converts discrete-time signals (which are sequences) into a complex
frequency domain representation. It is the discrete counterpart of the Laplace Trans-
form, which is used for continuous-time systems, as explained in [9, 10].

2In the references [3, 7, 8, 15, 16, 17] one can be found several results involving the Möbius function.
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Definition 1.1. For a sequence (xn)n∈N∪0 its Z-transform X(z) is defined as:

Z{xn} = X(z) =
∞∑
n=0

xnz
−n,

where z is a complex variable.

Example 1.2. For un = 1, ∀n ∈ N ∪ 0, its Z-transform is

Z{un} = U(z) =
∞∑
n=0

z−n =
z

z − 1
,

which is convergent for |z| > 1

Example 1.3. For xn = n, ∀n ∈ N ∪ {0}, its Z-transform is

Z{xn} = X(z) =
∞∑
n=0

z−n =
z

(z − 1)2
,

which is convergent for |z| > 1.

In the previous example, it is customary to denote Z{xn} by Z{n}.
We will list some properties of the Z-transform useful to obtain our results.

• [Linearity] Z{xn ± yn} = Z{xn} ± Z{yn}

• [Multiplication by a constant] Z{axn} = aZ{xn}

• [Convolution] Z{
∑n

k=0 xkyn−k} = Z{xn}Z{yn}

The Z-transform X(z) of a given sequence (xn)n∈N∪{0} is unique. The inverse Z-
transform is

xn = Z−1{X(z)} =
1

2πi

∮
C

X(z)zn−1dz,

where C is a counterclockwise closed path encircling the origin and entirely in the region
of convergence of X(z).

ReviSeM, Year 2024, No. 3, 136–143 138



Bonilla, Prajapati and Alegri

2 Main Results

Theorem 2.1. For all n ≥ 0, we have

p(n) =
n+1∑
k=1

ϕ(k)(Sn+1,k − 2Sn,k + Sn−1,k).

Proof. Denoting by

qn =
n∑

k=1

kp(n− k) =
n∑

k=1

ϕ(k)Sn,k,

and considering
∑n

k=1 kp(n− k) as a Cauchy convolution, we have

Z{qn} = Z{p(n)}Z{k},
thus

Z{p(n)} =
(z − 1)2

z
Z{qn},

by example 2.
Therefore

Z{p(n)} = Z{qn+1 − 2qn + qn−1},
which implies in the equation (1.4).

Theorem 2.2.
p∑

r=j

ap−rSr,j =

{
1, if j = 1, p;

0, if 2 ≤ j ≤ p− 1,

for p a prime number, where aj is given by (1.6).

Proof. Applying Z-transform in both sides of (1.3), we have:

Z{
n∑

k=1

g(k)p(n− k)} = Z{g(n)}Z{p(n)} = Z{
n∑

k=1

f(k)Sn,k}.

By the Pentagonal number theorem of Euler, we have:(
∞∑
n=0

p(n)qn

)(
∞∏
n=1

(1− qn)

)
= 1,
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and using the Z-transform, we can obtain

Z{p(n)} = (Z{an})−1 .

Thus,

Z{g(n)} = Z{an}Z{
n∑

k=1

f(k)Sn,k},

and using the convolution property again, we have:

g(n) =
∑
d|n

f(d) =
n∑

k=1

f(k)Sn,k, n ≥ 1, (2.1)

for any arithmetic function f . If n is a prime number, then g(p) = f(1) + f(p) and
from (2.1), we can conclude the proof.

Prof. Merca ([11]) comments that the previous result could be a particular case of
general results obtained in [12].

If f = Jm is the Jordan totient function as defined in [3], thus g(n) = nm and from
equation (1.3), we have:

n∑
k=1

kmp(n− k) =
n∑

k=1

Jm(k)Sn,k.

For m = 2, using the Z-transform as did in the last theorem, we can get the result
as follows.

Theorem 2.3. For n ≥ 0,

p(n) = J2(n+1)+J2(n)(Sn+1,n−4)+
n−1∑
k=1

J2(k)

(
Sn+1,k − 4Sn,k − Sn−1,k − 8

n−1∑
j=k

(−1)(n− j)Sj,k

)

An interesting application of (1.3) is for f is the nontrivial Dirichlet character
(mod 4), as defined in [13, 14]:

f(n) = χ4(n) =

{
(−1)

n−1
2 , if n is odd;

0, if n is even
=


1, if n ≡ 1(mod4);

−1, if n ≡ −1(mod4);

0, if n ≡ 0(mod2),
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and g(n) =
∑

d|n χ4(d) = 1
4
r2(n), by the Jacobi’s identity as given in [13, 18]. Using

the aforementioned identity (1.3), we have the result as follows.

Corollary 2.4. For n ≥ 1, we have:

n∑
k=1

r2(k)p(n− k) = 4
n∑

k=1

χ4(k)Sn,k.

Applying Z-transform in the previous equation, we have:

Z{
n∑

k=1

r2(k)p(n− k)} = Z{r2(n)}Z{p(n)} = Z{4
n∑

k=1

χ4(k)Sn,k}.

As we known,

Z{p(n)} = (Z{an})−1 ,

then

Z{r2(n)} = Z{an}Z{4
n∑

k=1

χ4(k)Sn,k}.

For

bn = 4
n∑

k=1

χ4(k)Sn,k, (2.2)

we have:

Z{r2(n)} = Z{
n∑

l=1

an−lbl}.

We can conclude this section with the next result.

Theorem 2.5. For n ≥ 1,

r2(n) =
n∑

l=1

an−lbl,

where bn is given as (2.2), and an as (1.6).
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3 Conclusion

Our analysis shows that the Z-transform is useful to study relations involving arithmetic
functions, in particular, its application to results obtained by Merca [1] allows to deduce
the explicit expression (1.4) for the partition function p(n) in terms of Euler’s totient,
and the identity (1.5) for pentagonal numbers. The result of Theorem 2.3 is nontrivial
and it connects p(n) with the Jordan’s totient J2(n).
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