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Abstract

This paper provides a combinatorial interpretation of mock theta functions as
generating functions for certain classes of plane partitions through a uniform procedure.
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1 Introduction

In his last letter to Hardy in 1920 (see [13, p. 127–131]), Ramanujan introduced the
notion of a mock theta function. He listed 17 such functions having orders 3, 5, and
7. Since then, the mock theta functions have received much attention. In addition to
the classical mock theta functions, many new ones have been discovered recently, see
[9, 11, 12] for example.

Combinatorial aspects of mock theta functions have been investigated by many
authors, including [1, 2, 4, 7, 15, 16]. For instance, in [7] the mock theta functions are
combinatorially interpreted in terms of two-line arrays. Combinatorial interpretation
in terms of partitions can be seen in [1, 2, 8, 15, 16]. For example, Choi and Kim [8]
provide partition theoretic properties of third order mock theta functions ϕ(q), ψ(q),
ν(q) and sixth order mock theta functions Ψ(q), Ψ−(q), ρ(q), and λ(q) in terms of n-
color partitions and n-color overpartitions. Choi and Kim close their paper noting that
it would be interesting to see a description of the mock theta functions as generating
functions for certain classes of plane partitions or plane overpartitions.

We recall that a plane partition of the positive integer n is an array of non-negative
integers

n11 n12 n13 · · ·
n21 n22 n23 · · ·
...

...
... · · ·
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for which
∑
nij = n and the rows and columns are arranged in non-increasing order:

nij ≥ n(i+1)j and nij ≥ ni(j+1), for all i, j ≥ 1.
The goal of this paper is to provide combinatorial interpretations in terms of plane

partitions for the mock theta functions, which answers the question raised by Choi and
Kim [8] about describing the mock theta functions as generating functions for certain
classes of plane partitions.

This paper is organized as follows. In Section 2, we describe a class of plane par-
titions and how it can be obtained from a two-line matrix. Section 3 is devoted to
proving the main results of this paper. We close the paper summarizing the combina-
torial interpretations for the mock theta functions in Section 4.

2 Preliminaries

In this section, we describe two important constructions that will be used throughout
the paper. The first one associates a given three-line matrix to a lattice path, which is
linked to a plane partition in a unique way. The second one describes how we transform
certain two-line matrices into three-line matrices. The last construction is essential for
building the plane partitions from mock theta functions thanks to what was proven in
[7].

2.1 A special class of plane partitions

Given a three-line matrix consisting of positive integers, we describe below how we
can associate it to a lattice path in the 3-dimensional space, to build a volume, which
is going to correspond to a plane partition. This construction can be done in many
different ways, each one providing us with a family of plane partitions. However, as we
are seeking a uniform class of plane partitions generated by mock theta functions, we
choose a specific way to do this construction.

Consider, for example, the three-line matrix 12 10 7 2

2 3 1 4

5 1 2 1

 . (2.1)

To obtain a solid representing a plane partition from (2.1), we draw the lattice path
starting at (0, 1, 1) moving 12 units in the x-direction, 2 units in the y-direction, 5 units
in the z-direction, 10 units in the x-direction, 3 units in the y-direction, 1 unit in the
z-direction, and so on. At the end, we insert an extra move of 1 unit in the x-direction.
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In this way, we generate a unique 3-dimensional path. The corresponding path is shown
in Figure 1, where a ∗ together with a number near a corner represents a step in the
positive z-direction.

x

y

12
2

10
3

7 1
2

4

1∗

5∗

1∗
2∗

1∗1

Figure 1: The lattice path associated to matrix (2.1)

From the path shown in Figure 1, we need to get a plane partition in the conventional
way, i.e., as a solid in the first octant. In order to do this, we apply the transformation
x 7→ −x, which corresponds to a reflection concerning the yz-plane followed by a
translation of 32 units (the sum of the entries in the first line of the matrix (2.1) plus
one) in the x-direction. The resulting lattice path is shown in Figure 2.

x

y

12
2

10
3

71
2

4

1

∗1

∗5

∗1
∗2

∗1

Figure 2: The lattice path that gives the plane partition associated to matrix (2.1)

Now, we construct the plane partition by stacking 1 × 1 × 1 cubes into the solid
limited by the lattice path shown in Figure 2, respecting the high of the levels in the
z-direction. The plane partition corresponding to this solid is shown in Figure 3. Note
that the number of levels parallel to each of the planes xy, xz, and yz is the same.

The type of plane partitions that are relevant to the rest of the paper is defined
below.

Definition 2.1. A plane partition is said to be of type R if in its geometrical rep-
resentation, the entries having the same value form a unique rectangle parallel to the
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10 9 9 7 7 7 7 7 7 7 6 6 6 6 6 6 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1

Figure 3: The plane partition associated to the matrix (2.1)

xy-plane and the number of distinct levels that are parallel to each of the planes xy,
xz, and yz is the same.

Considering the construction above, it is easy to write
the matrix with positive entries corresponding to a plane
partition of type R. To get the entries on the third line,
we have to stand on the plane z = 1 (since we have
started drawing the lattice path at (0, 1, 1)), climb to the
top, and set the height of those steps as the entries. To
get the entries on the second line, we have to stand on
the plane y = 1, go up to the top, and set the height of
those steps as the entries. As we have made a reflection
in the construction of the solids, to obtain the entries on
the first line, we have to stand on the plane x = 1, climb
to the top, count the height of those steps, and, then,
set the entries as being these integers in reverse order.
For instance, in the figure to the right, we have a type R
plane partition and its corresponding three-line matrix.

 3 3 2 1 1

3 1 2 2 1

2 3 1 2 2



The general appearance of a type R plane partition is shown in Figure 4.
We let λi be the value of the parts at each level parallel to the xy-plane, while xj

and yj are the steps in the x-direction and y-direction, respectively. For example, the
plane partition shown in Figure 3 has s = 4, λ1 = 1, λ2 = 6, λ3 = 7, λ4 = 9, λ5 = 10,
x1 = 12, x2 = 10, x3 = 7, x4 = 2, x5 = 1, y1 = 1, y2 = 2, y3 = 3, y4 = 1, and y5 = 4.

ReviSeM, Year 2024, No. 3, 78–123 81



Spreafico and Silva

x

y

λ1
λ2

· · ·λs−1

λs

λs+1

x1

x2

xs−1

xs

xs+1

y1

y2

y3

ys−1

ys

ys+1

Figure 4: A lattice path of a type R plane partition

2.2 From two-line and three-line matrices

In [14] three characterizations of unrestricted partitions in terms of two-line matrices
are presented. We recall two of them below to illustrate how one can obtain a three-line
matrix from a two-line matrix in such a way that a plane partition can be built.

Theorem 2.2 (Theorem 8, [14]). The number of unrestricted partitions of n is equal
to the number of two-line matrices of the form(

c1 c2 c3 . . . cs
d1 d2 d3 . . . ds

)
, (2.2)

where
cs = 0,
ct = ct+1 + dt+1, ∀t < s,
n =

∑
ct +

∑
dt.

(2.3)

Theorem 2.3 (Theorem 10, [14]). The number of unrestricted partitions of n is equal
to the number of two-line matrices of the form(

c1 c2 c3 . . . cs
d1 d2 d3 . . . ds

)
, (2.4)

where
cs ̸= 0,
ct ≥ 2 + ct+1 + dt+1, ∀t < s,
n =

∑
ct +

∑
dt.

(2.5)
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Bijective proofs of these theorems can be found in [5].
We now discuss how we will associate a three-line matrix to a given matrix of one of

the types appearing in the above theorems. Consider a two-line matrix (2.2) satisfying
(2.3), namely, (

c1 c2 c3 · · · cs
d1 d2 d3 · · · ds

)
, (2.6)

where
ct = a+ ct+1 + dt+1, ∀t < s,
n =

∑
ct +

∑
dt,

with a positive integer and cs is a given constant. Initially, we add a third line with
zeros in (2.2). In order to obtain a type R plane partition, we add 1 to each entry of
the resulting matrix, obtaining a(s− 1) + cs + d2 + · · · ds + 1 · · · a+ cs + ds + 1 cs + 1

d1 + 1 · · · ds−1 + 1 ds + 1
1 · · · 1 1

 . (2.7)

Matrix (2.7) is what we need to build the lattice path and, then, the plane partition as
we discussed previously.

As another example, consider a matrix (2.4) satisfying (2.5), namely

ct ≥ a+ ct+1 + dt+1, ∀t < s,
n =

∑
ct +

∑
dt,

(2.8)

with a a positive integer and cs is a given constant. From the restrictions (2.8), we see
that there exists, for each t, a non-negative integer it such that ct = a+ it+ ct+1+ dt+1,
for 1 ≤ t ≤ s− 1, and is = cs. Hence, we can rewrite matrix (2.4) as(

a(s− 1) + i1 + · · ·+ is + d2 + · · ·+ ds · · · a+ is−1 + is + ds is
d1 · · · ds−1 ds

)
. (2.9)

We associate a three-line matrix to (2.9) by subtracting it from the t-th entry in the
first row and setting it as the t-th entry of a new third row: a(s− 1) + i2 + · · ·+ is + d2 + · · ·+ ds · · · a+ is + ds 0

d1 · · · ds−1 ds
i1 · · · is−1 is

 . (2.10)

Note that matrix (2.10) may have zero entries. Then, in order to obtain a type R plane
partition, we add 1 to each entry of this matrix, obtaining: a(s− 1) + 1 + i2 + · · ·+ is + d2 + · · ·+ ds · · · a+ 1 + is + ds 1

1 + d1 · · · 1 + ds−1 1 + ds
1 + i1 · · · 1 + is−1 1 + is

 . (2.11)
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This procedure can be easily reversed to get (2.4) again.
This method permits us to associate a finite set of restricted partitions of n to a

finite set of three-line matrices of the form c1 c2 c3 · · · cs
d1 d2 d3 · · · ds
e1 e2 e3 · · · es

 , (2.12)

where ej = λj+1 − λj, xj = cj and dj = yj+1, for j = 1, . . . , s, considering the preceding
notation of λj, xj and yj.

3 The plane partitions generated by mock theta

functions

Our goal in this section is to interpret the mock theta functions as generating functions
for certain type R plane partitions. The idea is to employ the combinatorial interpre-
tation as two-line matrices for the mock theta functions from [7] to create three-line
matrices and, then, build the plane partitions, proceeding according to the method
presented in the last sections.

We use the notation (a; q)0 = 1 and (a; q)n =
∏n−1

k=0(1−aqk) for any positive integer
n.

Consider the third-order mock theta function:

f(q) =
∞∑
n=0

qn
2

(−q; q)2n
.

In [7] this mock theta function was shown to be the generating function for two-line
matrices of the form (

c1 c2 c3 · · · cs
d1 d2 d3 · · · ds

)
(3.1)

with non-negative integer entries satisfying

cs ≥ 1,
ct ≥ 2 + ct+1 + dt+1,
n =

∑
ct +

∑
dt,

(3.2)

and weight (−1)d1−c1+1. From the restrictions in (3.2), we see that there are, for each
t, a non-negative integer it such that ct = 2 + it + ct+1 + dt+1, for 1 ≤ t ≤ s − 1, and
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cs = 1 + is. Hence, we can rewrite matrix (3.1) as:(
2s− 1 + i1 + · · ·+ is + d2 + · · ·+ ds · · · 3 + is−1 + is + ds 1 + is

d1 · · · ds−1 ds

)
. (3.3)

We associate a three-line matrix to (3.3) by subtracting it from the t-th entry in the
first row and setting it as the t-th entry of a new third row: 2s− 1 + i2 + · · ·+ is + d2 + · · ·+ ds · · · 3 + is + ds 1

d1 · · · ds−1 ds
i1 · · · is−1 is

 . (3.4)

Note that matrix (3.4) may have zero entries. Then, in order to obtain a type R plane
partition, we add 1 to each entry of this matrix, obtaining: 2s+ i2 + · · ·+ is + d2 + · · ·+ ds · · · 4 + is + ds 2

1 + d1 · · · 1 + ds−1 1 + ds
1 + i1 · · · 1 + is−1 1 + is

 . (3.5)

This procedure can be easily reversed to get (3.1) again.
Now we can use the procedure described in the subsection 2.1 to associate a unique

type R plane partition to each matrix (3.5). The next theorem presents the result for
the mock theta function f(q). In this theorem, we use the parameters from Figure 4 to
describe the plane partitions.

Theorem 3.1. The mock theta function f(q) is the generating function for type R
plane partitions having weight (−1)y2−x1−λ2+λ1 and satisfying:

i. λ1 = 1, λj − λj−1 ≥ 1,

ii. y1 = 1, yj ≥ 1,

iii. xs+1 = 1, xs = 2, xj − xj+1 = yj+2 + λj+2 − λj+1.

Proof. Firstly we note that the plane partitions obtained from (3.1) have:
y1 = 1, yj = 1 + dj−1, j = 2, . . . , s + 1, λ1 = 1, λj+1 − λj = 1 + ij, j = 1, . . . , s,
and

x1 = 2s+ i2 + i3 + · · ·+ is + d2 + d3 + · · ·+ ds,
x2 = 2(s− 1) + i3 + · · ·+ is + d3 + · · ·+ ds,

...
xs−1 = 4 + is + ds,
xs = 2,
xs+1 = 1.
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Then, λi+1 − λi ≥ 1 and yi ≥ 1. We also have xj − xj+1 = 2 + ij+1 + dj+1 = 1 + ij+1 +
1 + dj = λj+2 − λj+1 + yj+2. Finally, the weight of the plane partitions are:

(−1)d1−c1+1 = (−1)(y2−1)−(2s+i2+···+is+d2+···+ds+(1+i1)−2)+1,
= (−1)y2−1−(x1+λ2−λ1−2)+1,
= (−1)y2−x1−λ2+λ1 .

Conversely, it is easy to see that, given a typeR plane partition satisfying conditions
i, ii, and iii, we can associate to it a unique matrix of the form (3.1).

Now, consider the third-order mock theta function:

ϕ(q) =
∞∑
n=0

qn
2

(−q2; q2)n
.

In [7] this mock theta function was shown to be the generating function for two-line
matrices of the form (

c1 c2 c3 · · · cs
d1 d2 d3 · · · ds

)
(3.6)

with non-negative integer entries satisfying

cs = 1,
ct = 2 + ct+1 + dt+1,
2 | d,∑
ct +

∑
dt = n,

(3.7)

and weight (−1)
1
2

∑s
t=1 dt .

From the restrictions in (3.7), we can rewrite matrix (3.6) as:(
(2s− 1) + 2d2 + · · ·+ 2ds · · · 3 + 2ds 1

2d1 · · · 2ds−1 2ds,

)
. (3.8)

We associate a three-line matrix to (3.8) by putting 0 as the t-th entry of a new third
row:  (2s− 1) + 2d2 + · · ·+ 2ds · · · 3 + 2ds 1

2d1 · · · 2ds−1 2ds
0 · · · 0 0

 . (3.9)

Note that matrix (3.9) may have zero entries. Then, in order to obtain a type R plane
partition, we add 1 to each entry of this matrix, obtaining: 2s+ 2d2 + · · ·+ 2ds · · · 4 + 2ds 2

1 + 2d1 · · · 1 + 2ds−1 1 + 2ds
1 · · · 1 1

 . (3.10)
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This procedure can be easily reverted to get (3.6) again.
Now we can use the procedure described in the last subsection to associate a unique

type R plane partition to each matrix (3.10). The next theorem presents the result for
the mock theta function ϕ(q). In this theorem, we use the parameters from Figure 4 to
describe the plane partitions.

Theorem 3.2. The mock theta function ϕ(q) is the generating function for type R
plane partitions having weight (−1)

1
2
(−s+(

∑s+1
t=2 yt)) and satisfying:

i. λ1 = 1, λj+1 − λj = 1,

ii. y1 = 1, yj ≡ 1(mod 2),

iii. xs+1 = 1, xs = 2, xj − xj+1 = 1 + yj+1.

Proof. The plane partitions obtained from (3.10) have the parameters
y1 = 1, yj = 1 + 2dj−1, then yj ≡ 1(mod 2), for j = 2, . . . , s + 1, λ1 = 1, λj+1 − λj =
1, j = 1, . . . , s, and

x1 = 2s+ 2d2 + 2d3 + · · ·+ 2ds,
x2 = 2(s− 1) + 2d3 + · · ·+ 2ds,

...
xs−1 = 4 + 2ds,
xs = 2,
xs+1 = 1.

Then, we also have xj − xj+1 = 2 + dj+1 = 1 + 1 + ij+1 = 1 + yj+2. Finally, the weight
of the plane partitions are:

(−1)
1
2

∑s
t=1 dt = (−1)

1
2
(−s+(

∑s+1
t=2 yt)),

since dj = yj+1 − 1, for j = 1, . . . , s.
Conversely, it is easy to see that, given a typeR plane partition satisfying conditions

i, ii, and iii, we can associate to it a unique matrix of the form (3.10).

Using the analogous idea, consider the third-order mock theta function.

ψ(q) =
∞∑
n=0

qn
2

(q; q2)n
.

Thus, ψ(q) is the generating function for two-line matrices of the form(
c1 c2 c3 · · · cs
d1 d2 d3 · · · ds

)
(3.11)
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with non-negative integer entries satisfying

cs = 1,
ct = 2 + ct+1 + 2dt+1,∑
ct +

∑
dt = n.

(3.12)

The procedure described in the last subsection associates a unique type R plane
partitions given by the following result.

Theorem 3.3. The mock theta function ψ(q) is the generating function for type R
plane partitions and satisfying:

i. λ1 = 1, λj − λj−1 = 1,

ii. y1 = 1, yj ≥ 1,

iii. xs+1 = 1, xs = 2, xj − xj+1 = 2yj+1.

Proof. From the restrictions in (3.12), we can rewrite matrix (3.11) as:(
(2s− 1) + 2d2 + · · ·+ 2ds · · · 3 + 2ds 1

d1 · · · ds−1 ds

)
. (3.13)

We associate a three-line matrix to (3.13) by putting 0 as the t-th entry of a new third
row:  (2s− 1) + 2d2 + · · ·+ 2ds · · · 3 + 2ds 1

d1 · · · ds−1 ds
0 · · · 0 0

 . (3.14)

Note that matrix (3.14) may have zero entries. Then, in order to obtain a type R plane
partition, we add 1 to each entry of this matrix, obtaining: 2s+ 2d2 + · · ·+ 2ds · · · 4 + 2ds 2

1 + d1 · · · 1 + ds−1 1 + ds
1 · · · 1 1

 . (3.15)

Therefore, proceeding as Theorem 3.2 the result is provided.

The following third-order mock theta function considered is

χ(q) =
∞∑
n=0

(−q; q)nqn
2

(−q3; q3)n
.
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This mock theta function is the generating function for two-line matrices of the form(
c1 c2 c3 · · · cs
d1 d2 d3 · · · ds

)
(3.16)

with non-negative integer entries satisfying

cs ∈ {1, 2}
ct = it + ct+1 + dt+1, it ∈ {2, 3}
3 | dt∑
ct +

∑
dt = n

(3.17)

and weight (−1)
1
3

∑s
t=1 dt . Then, the next theorem describes the set of restricted plane

partitions that the mock theta function χ(q) is a generating function.

Theorem 3.4. The mock theta function χ(q) is the generating function for type R
plane partitions having weight (−1)

1
3
(−s+(

∑s+1
t=2 yt)) and satisfying:

i. λ1 = 1, 3 ≤ λj − λj−1 ≤ 4,

ii. y1 = 1, yj ≡ 1(mod 3),

iii. xs+1 = 1, xs = 1, xj − xj+1 = λj+1 − λj + yj+1 − 2.

Proof. Recall the interpretation for χ(q) as the generating functions for the set of two-
line matrices in the form (3.17) with restrictions (3.16). From the restrictions in (3.17),
we can rewrite matrix (3.16) as:(

is + is−1 + is−2 + · · ·+ i1 + 3d2 + · · ·+ 3ds · · · is + is−1 + 3ds 0
3d1 · · · 3ds−1 3ds

)
. (3.18)

We associate a three-line matrix to (3.18) by subtracting it from the t-th entry in the
first row and putting it as the t-th entry of a new third row: is + is−1 + is−2 + · · ·+ i2 + 3d2 + · · ·+ 3ds · · · is + 3ds 0

3d1 · · · 3ds−1 3ds
i1 · · · is−1 is

 . (3.19)

Note that matrix (3.19) may have zero entries. Then, in order to obtain a type R plane
partition, we add 1 to each entry of this matrix, obtaining: 1 + is + is−1 + is−2 + · · ·+ i2 + 3d2 + · · ·+ 3ds · · · 1 + is + 3ds 1

1 + 3d1 · · · 1 + 3ds−1 1 + 3ds
1 + i1 · · · 1 + is−1 1 + is

 . (3.20)
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This procedure can be easily reverted to get (3.16) again. Now we can use the
procedure described in the last subsection to associate a unique type R plane partition
to each matrix (3.20). The plane partitions obtained from (3.20) have the parameters
y1 = 1, yj = 1+3dj−1, then yj ≡ 1(mod 3), for j = 2, . . . , s+1, λ1 = 1, λj+1−λj = 1+ij,
since it ∈ {2, 3} then 3 ≤ λj − λj−1 ≤ 4. for j = 1, . . . , s. Also,

x1 = 1 + is + is−1 + is−2 + · · ·+ i2 + 3d2 + · · ·+ 3ds,
...

xs = 1 + is + 3ds,
xs+1 = 1.

Then, we have xj − xj+1 = ij + 3dj = λj+1 − λj + yj+1 − 2. Finally, the weight of the
plane partitions are:

(−1)
1
3

∑s
t=1 dt = (−1)

1
3
(−s+(

∑s+1
t=2 yt)),

since dj = yj+1 − 1, for j = 1, . . . , s.
Conversely, it is easy to see that, given a typeR plane partition satisfying conditions

i, ii, and iii, we can associate to it a unique matrix of the form (3.20).

The analogous process can be applied to the Third-order mock theta function

qω(q) =
∞∑
n=0

q2n(n+1)+1

(q; q2)2n+1

,

generating function for two-line matrices of the form(
c1 c2 c3 · · · cs
d1 d2 d3 · · · ds

)
(3.21)

with non-negative integer entries satisfying

cs = 1
ct = ct+1 + 2dt+1,∑
ct +

∑
dt = n.

(3.22)

And also for the third-order mock theta function

ν(q) =
∞∑
n=0

qn(n+1)

(−q; q2)n+1

,
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generating function for two-line matrices of the form(
c1 c2 c3 · · · cs
d1 d2 d3 · · · ds

)
(3.23)

with non-negative integer entries satisfying

cs = 0
ct = 2 + ct+1 + 2dt+1∑
ct +

∑
dt = n

(3.24)

and weight (−1)n. The following results are the interpretations in terms of plane par-
titions for them, respectively.

Theorem 3.5. The mock theta function qω(q) is the generating function for type R
plane partitions and satisfying:

i. λ1 = 1, λj − λj−1 = 1,

ii. y1 = 1, yj ≥ 1,

iii. xs+1 = 1, xs = 2, xj − xj+1 = 2(yj+1 − 1), xj ≡ 0(mod 2).

Theorem 3.6. The mock theta function ν(q) is the generating function for type R
plane partitions having weight (−1)

∑s
t=1 xt+yt+1 and satisfying:

i. λ1 = 1, λj − λj−1 = 1,

ii. y1 = 1, yj ≥ 1,

iii. xs+1 = 1, xs = 1, xj − xj+1 = 2yj+2 − 1.

The next third-order mock theta function treated is

ρ(q) =
∞∑
n=0

(−q; q2)n+1q
2n(n+1)

(−q3; q6)n+1

.

In [7] this mock theta function was shown to be the generating function for two-line
matrices of the form (

c1 c2 c3 · · · cs
d1 d2 d3 · · · ds

)
(3.25)
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with non-negative integer entries satisfying

cs ∈ {0, 1}
ct = 4 + ct+1 + 2dt+1, if ct, ct+1 both even
ct = 5 + ct+1 + 2dt+1, if one even one odd
ct = 6 + ct+1 + 2dt+1, if ct, ct+1 both odd
3 | dt∑
ct +

∑
dt = n.

(3.26)

From the restrictions in (3.26), we can rewrite matrix (3.25) as:(
4(s− 1) + is + is−1 + is−2 + · · ·+ i1 + 6d2 + · · ·+ 6ds · · · 4 + is + is−1 + 6ds is

3d1 · · · 3ds−1 3ds

)
,

(3.27)

with is ∈ {0, 1} and it =


0,

∑s
j=t ij ≡

∑s
j=t+1 ij ≡ 0 (mod 2),

1,
∑s

j=t ij ̸≡
∑s

j=t+1 ij (mod 2),

2,
∑s

j=t ij ≡
∑s

j=t+1 ij ≡ 1 (mod 2).

We associate a three-line matrix to (3.27) by subtracting it from the t-th entry in
the first row and putting it as the t-th entry of a new third row: 4(s− 1) + is + is−1 + is−2 + · · ·+ i2 + 3d2 + · · ·+ 3ds · · · 4 + is + 3ds 0

3d1 · · · 3ds−1 3ds
i1 · · · is−1 is

 .

(3.28)

Then, in order to obtain a type R plane partition, we add 1 to each entry of this matrix,
obtaining: 4s− 3 + is + is−1 + is−2 + · · ·+ i2 + 3d2 + · · ·+ 3ds · · · s+ is + 3ds 1

1 + 3d1 · · · 1 + 3ds−1 1 + 3ds
1 + i1 · · · 1 + is−1 1 + is

 .

(3.29)

From the matrix representation (3.29), the next theorem presents the result for the
mock theta function χ(q) in terms of plane partitions.

Theorem 3.7. The mock theta function ρ(q) is the generating function for type R
plane partitions having weight (−1)

1
3
(−s+(

∑s+1
t=2 yt)) and satisfying:

i. λ1 = 1, 1 ≤ λj − λj−1 ≤ 3, 1 ≤ λs−1 − λs ≤ 2,

ii. y1 = 1, yj ≡ 1(mod 3),

iii. xs+1 = 1, xs = 1, xj − xj+1 = 2 + λj+2 − λj+1 + yj+2.
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Proof. Recall the preceding discussion Recall the interpretation for χ(q) as the generat-
ing functions for the set of two-line matrices in the form (3.25) with restrictions (3.26).
As a preceding building, the three-line matrix representation is given by (3.29), namely, 4s− 3 + is + is−1 + is−2 + · · ·+ i2 + 3d2 + · · ·+ 3ds · · · s+ is + 3ds 1

1 + 3d1 · · · 1 + 3ds−1 1 + 3ds
1 + i1 · · · 1 + is−1 1 + is

 .

The plane partitions obtained from (3.29) have the parameters
y1 = 1, yj = 1+3dj−1, then yj ≡ 1(mod 3), for j = 2, . . . , s+1, λ1 = 1, λj+1−λj = 1+ij,
since is ∈ {0, 1} then 1 ≤ λs − λs−1 ≤ 2, and 1 ≤ λj − λj−1 ≤ 3, for j = 1, . . . , s − 1.
Also,

x1 = 4s− 3 + is + is−1 + is−2 + · · ·+ i2 + 3d2 + · · ·+ 3ds,
...

xs = s+ is + 3ds,
xs+1 = 1.

Then, we have xj − xj+1 = ij + 3dj = λj+1 − λj + yj+1 − 2. Finally, the weight of the
plane partitions are:

(−1)
1
3

∑s
t=1 dt = (−1)

1
3
(−s+(

∑s+1
t=2 yt)),

since dj = yj+1 − 1, for j = 1, . . . , s.
Conversely, it is easy to see that, given a typeR plane partition satisfying conditions

i, ii, and iii, we can associate to it a unique matrix of the form (3.20).

Consider, for example, the third-order mock theta function:

f0(q) =
∞∑
n=0

qn
2

(−q; q)n
,

where (a; q)0 = 1 and (a; q)n =
∏n−1

k=0(1 − aqk) for any positive integer n. In [7] this
mock theta function was shown to be the generating function for two-line matrices of
the form (

c1 c2 c3 · · · cs
d1 d2 d3 · · · ds

)
(3.30)

with non-negative integer entries satisfying

cs = 1
ct = 2 + ct+1 + dt+1∑
ct +

∑
dt = n

(3.31)
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and weight (−1)
∑s

t=1 dt . From the restrictions in (3.31), we can rewrite matrix (3.30)
as: (

(2s− 1) + d2 + · · ·+ ds · · · 3 + ds 1
d1 · · · ds−1 ds

)
. (3.32)

We associate a three-line matrix to (3.32) by putting 0 as the t-th entry of a new third
row:  (2s− 1) + d2 + · · ·+ ds · · · 3 + ds 1

d1 · · · ds−1 ds
0 · · · 0 0

 . (3.33)

Note that matrix (3.33) may have zero entries. Then, in order to obtain a type R plane
partition, we add 1 to each entry of this matrix, obtaining: 2s+ d2 + · · ·+ ds · · · 4 + ds 2

1 + d1 · · · 1 + ds−1 1 + ds
1 · · · 1 1

 . (3.34)

This procedure can be easily reverted to get (3.30) again.
Now we can use the procedure described in the last subsection to associate a unique

type R plane partition to each matrix (3.34). The next theorem presents the result for
the mock theta function f0(q). In this theorem, we use the parameters from Figure 4
to describe the plane partitions.

Theorem 3.8. The mock theta function f0(q) is the generating function for type R
plane partitions having weight (−1)(−s+(

∑s+1
t=2 yt)) and satisfying:

i. λ1 = 1, λj − λj−1 = 1,

ii. y1 = 1, yj ≥ 1,

iii. xs+1 = 1, xs = 2, xj − xj+1 = 1 + yj+2.

Proof.

Consider, for example, the third-order mock theta function:

F0(q) =
∞∑
n=0

q2n
2

(q; q2)n
,
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where (a; q)0 = 1 and (a; q)n =
∏n−1

k=0(1 − aqk) for any positive integer n. In [7] this
mock theta function was shown to be the generating function for two-line matrices of
the form (

c1 c2 c3 · · · cs
d1 d2 d3 · · · ds

)
(3.35)

with non-negative integer entries satisfying

cs = 2
ct = 4 + ct+1 + dt+1∑
ct +

∑
dt = n

(3.36)

From the restrictions in (3.36), we can rewrite matrix (3.35) as:(
2(2s− 1) + d2 + · · ·+ ds · · · 6 + ds 2

d1 · · · ds−1 ds

)
. (3.37)

We associate a three-line matrix to (3.37) by putting 0 as the t-th entry of a new third
row:  2(2s− 1) + d2 + · · ·+ ds · · · 6 + ds 2

d1 · · · ds−1 ds
0 · · · 0 0

 . (3.38)

Note that matrix (3.33) may have zero entries. Then, in order to obtain a type R plane
partition, we add 1 to each entry of this matrix, obtaining: 4s− 1 + d2 + · · ·+ ds · · · 7 + ds 3

1 + d1 · · · 1 + ds−1 1 + ds
1 · · · 1 1

 . (3.39)

This procedure can be easily reverted to get (3.35) again.
Now we can use the procedure described in the last subsection to associate a unique

type R plane partition to each matrix (3.39). The next theorem presents the result for
the mock theta function F0(q). In this theorem, we use the parameters from Figure 4
to describe the plane partitions.

Theorem 3.9. The mock theta function F0(q) is the generating function for type R
plane partitions satisfying:

i. λ1 = 1, λj − λj−1 = 1,

ii. y1 = 1, yj ≥ 1,

iii. xs+1 = 1, xs = 3, xj − xj+1 = yj+2 + 3.
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Proof.

Consider, for example, the third-order mock theta function:

Ψ0(q) = 1 +
1

2

∞∑
n=1

(−1; q)nq
(n+1

2 ),

where (a; q)0 = 1 and (a; q)n =
∏n−1

k=0(1 − aqk) for any positive integer n. In [7] this
mock theta function was shown to be the generating function for two-line matrices of
the form (

c1 c2 c3 · · · cs
d1 d2 d3 · · · ds

)
(3.40)

with non-negative integer entries satisfying

cs = 1
ds = 0
ct = 1 + ct+1 + dt+1

dt ∈ {0, 1}∑
ct +

∑
dt = n

(3.41)

From the restrictions in (3.41), we can rewrite matrix (3.40) as:(
s+ d2 + · · · ds−1 · · · 2 1

d1 · · · ds−1 0

)
. (3.42)

We associate a three-line matrix to (3.42) by putting 0 as the t-th entry of a new third
row:  s+ d2 + · · ·+ ds−1 · · · 2 1

d1 · · · ds−1 0
0 · · · 0 0

 . (3.43)

Note that matrix (3.43) may have zero entries. Then, in order to obtain a type R plane
partition, we add 1 to each entry of this matrix, obtaining: 1 + s+ d2 + · · ·+ ds1 · · · 3 2

1 + d1 · · · 1 + ds−1 1
1 · · · 1 1

 . (3.44)

This procedure can be easily reverted to get (3.40) again.
Now we can use the procedure described in the last subsection to associate a unique

type R plane partition to each matrix (3.44). The next theorem presents the result for
the mock theta function Ψ0(q). In this theorem, we use the parameters from Figure 4
to describe the plane partitions.
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Theorem 3.10. The mock theta function Ψ0(q) is the generating function for type R
plane partitions satisfying:

i. λ1 = 1, λj − λj−1 = 1,

ii. y1 = 1, ys+1 = 1, 0 ≤ |yj − yj+1| ≤ 1,

iii. xs+1 = 1, xs = 2, xs−1 = 3, xj − xj+1 = yj+2.

Proof.

Consider, for example, the third-order mock theta function:

Φ0(q) =
∞∑
n=1

(−q; q2)nqn
2

,

where (a; q)0 = 1 and (a; q)n =
∏n−1

k=0(1 − aqk) for any positive integer n. In [7] this
mock theta function was shown to be the generating function for two-line matrices of
the form (

c1 c2 c3 · · · cs
d1 d2 d3 · · · ds

)
(3.45)

with non-negative integer entries satisfying

cs ∈ {1, 2}
ct = 2 + ct+1 + 2dt+1

dt ∈ {0, 1}∑
ct +

∑
dt = n

(3.46)

From the restrictions in (3.46), we can rewrite matrix (3.45) as:(
2s+ cs + 2d2 + · · · 2ds · · · 2 + cs + 2ds cs

d1 · · · ds−1 ds

)
. (3.47)

We associate a three-line matrix to (3.47) by putting 0 as the t-th entry of a new third
row:  2s+ cs + 2d2 + · · · 2ds · · · 2 + cs + 2ds cs

d1 · · · ds−1 ds
0 · · · 0 0

 . (3.48)
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Note that matrix (3.48) may have zero entries. Then, in order to obtain a type R plane
partition, we add 1 to each entry of this matrix, obtaining: (2s+ 1) + cs + 2d2 + · · · 2ds · · · 3 + cs + 2ds 1 + cs

1 + d1 · · · 1 + ds−1 1 + ds
1 · · · 1 1

 . (3.49)

This procedure can be easily reverted to get (3.45) again.
Now we can use the procedure described in the last subsection to associate a unique

type R plane partition to each matrix (3.49). The next theorem presents the result for
the mock theta function Φ0(q). In this theorem, we use the parameters from Figure 4
to describe the plane partitions.

Theorem 3.11. The mock theta function Φ0(q) is the generating function for type R
plane partitions satisfying:

i. λ1 = 1, λj − λj−1 = 1,

ii. y1 = 1, 0| ≤ yj − yj+1| ≤ 1,

iii. xs+1 = 1, 2 ≤ xs ≤ 3, xj − xj+1 = 2(yj+2).

Proof.

Consider, for example, the third-order mock theta function:

f1(q) =
∞∑
n=1

qn
2+n

(−q; q)n
,

where (a; q)0 = 1 and (a; q)n =
∏n−1

k=0(1 − aqk) for any positive integer n. In [7] this
mock theta function was shown to be the generating function for two-line matrices of
the form (

c1 c2 c3 · · · cs
d1 d2 d3 · · · ds

)
(3.50)

with non-negative integer entries satisfying

cs = 2
ct = 2 + ct+1 + dt+1∑
ct +

∑
dt = n

(3.51)
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and weight (−1)
∑s

t=1 dt .From the restrictions in (3.51), we can rewrite matrix (3.50) as:(
2s+ d2 + · · · ds · · · 4 + ds 2

d1 · · · ds−1 ds

)
. (3.52)

We associate a three-line matrix to (3.52) by putting 0 as the t-th entry of a new third
row:  2s+ d2 + · · · ds · · · 4 + ds 2

d1 · · · ds−1 ds
0 · · · 0 0

 . (3.53)

Note that matrix (3.53) may have zero entries. Then, in order to obtain a type R plane
partition, we add 1 to each entry of this matrix, obtaining: 1 + 2s+ d2 + · · · ds · · · 5 + ds 3

1 + d1 · · · 1 + ds−1 1 + ds
1 · · · 1 1

 . (3.54)

This procedure can be easily reverted to get (3.50) again.
Now we can use the procedure described in the last subsection to associate a unique

type R plane partition to each matrix (3.54). The next theorem presents the result for
the mock theta function f1(q). In this theorem, we use the parameters from Figure 4
to describe the plane partitions.

Theorem 3.12. The mock theta function f1(q) is the generating function for type R
plane partitions having weight (−1)(−s+(

∑s+1
t=2 yt)) and satisfying:

i. λ1 = 1, λj − λj−1 = 1,

ii. y1 = 1, yj ≥ 1,

iii. xs+1 = 1, xs = 3, xj − xj+1 = yj+2 + 1.

Proof.

Consider, for example, the third-order mock theta function:

F1(q) =
∞∑
n=1

q2n
2+2n

(q; q2)n+1

,
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where (a; q)0 = 1 and (a; q)n =
∏n−1

k=0(1 − aqk) for any positive integer n. In [7] this
mock theta function was shown to be the generating function for two-line matrices of
the form (

c1 c2 c3 · · · cs
d1 d2 d3 · · · ds

)
(3.55)

with non-negative integer entries satisfying

cs = 0
ct = 4 + ct+1 + 2dt+1∑
ct +

∑
dt = n

(3.56)

From the restrictions in (3.56), we can rewrite matrix (3.55) as:(
4s+ 2d2 + · · · 2ds · · · 4 + 2ds 0

d1 · · · ds−1 ds

)
. (3.57)

We associate a three-line matrix to (3.57) by putting 0 as the t-th entry of a new third
row:  4s+ 2d2 + · · · ds · · · 4 + 2ds 0

d1 · · · ds−1 ds
0 · · · 0 0

 . (3.58)

Note that matrix (3.58) may have zero entries. Then, in order to obtain a type R plane
partition, we add 1 to each entry of this matrix, obtaining: 1 + 4s+ 2d2 + · · · 2ds · · · 5 + 2ds 1

1 + d1 · · · 1 + ds−1 1 + ds
1 · · · 1 1

 . (3.59)

This procedure can be easily reverted to get (3.55) again.
Now we can use the procedure described in the last subsection to associate a unique

type R plane partition to each matrix (3.59). The next theorem presents the result for
the mock theta function F1(q). In this theorem, we use the parameters from Figure 4
to describe the plane partitions.

Theorem 3.13. The mock theta function F1(q) is the generating function for type R
plane partitions satisfying:

i. λ1 = 1, λj − λj−1 = 1,

ii. y1 = 1, yj ≥ 1,

iii. xs+1 = 1, xs = 1, xj − xj+1 = 2 + 2yj+2.
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Proof.

Consider, for example, the third-order mock theta function:

Ψ1(q) =
∞∑
n=1

(−q; q)nq(
n+1
2 ),

where (a; q)0 = 1 and (a; q)n =
∏n−1

k=0(1 − aqk) for any positive integer n. In [7] this
mock theta function was shown to be the generating function for two-line matrices of
the form (

c1 c2 c3 · · · cs
d1 d2 d3 · · · ds

)
(3.60)

with non-negative integer entries satisfying

cs = 1
ct = 1 + ct+1 + dt+1

dt ∈ {0, 1}∑
ct +

∑
dt = n

(3.61)

From the restrictions in (3.61), we can rewrite matrix (3.60) as:(
s+ d2 + · · · ds−1 · · · 2 + ds 1

d1 · · · ds−1 ds

)
. (3.62)

We associate a three-line matrix to (3.62) by putting 0 as the t-th entry of a new third
row:  s+ d2 + · · ·+ ds−1 · · · 2 + ds 1

d1 · · · ds−1 ds
0 · · · 0 0

 . (3.63)

Note that matrix (3.63) may have zero entries. Then, in order to obtain a type R plane
partition, we add 1 to each entry of this matrix, obtaining: 1 + s+ d2 + · · ·+ ds1 · · · 3 + ds 2

1 + d1 · · · 1 + ds−1 1 + ds
1 · · · 1 1

 . (3.64)

This procedure can be easily reverted to get (3.60) again.
Now we can use the procedure described in the last subsection to associate a unique

type R plane partition to each matrix (3.64). The next theorem presents the result for
the mock theta function Ψ1(q). In this theorem, we use the parameters from Figure 4
to describe the plane partitions.
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Theorem 3.14. The mock theta function Ψ1(q) is the generating function for type R
plane partitions satisfying:

i. λ1 = 1, λj − λj−1 = 1,

ii. y1 = 1, 0| ≤ yj − yj+1| ≤ 1,

iii. xs+1 = 1, xs = 2, xj − xj+1 = yj+2.

Proof.

Consider, for example, the third-order mock theta function:

Φ1(q) =
∞∑
n=1

(−q; q2)nq(n+1)2 ,

where (a; q)0 = 1 and (a; q)n =
∏n−1

k=0(1 − aqk) for any positive integer n. In [7] this
mock theta function was shown to be the generating function for two-line matrices of
the form (

c1 c2 c3 · · · cs
d1 d2 d3 · · · ds

)
(3.65)

with non-negative integer entries satisfying

cs = 1
ds = 0
ct = 2 + ct+1 + 2dt+1

dt ∈ {0, 1}∑
ct +

∑
dt = n

(3.66)

From the restrictions in (3.66), we can rewrite matrix (3.65) as:(
2s+ 1 + 2d2 + · · · 2ds−1 · · · 3 1

d1 · · · ds−1 0

)
. (3.67)

We associate a three-line matrix to (3.67) by putting 0 as the t-th entry of a new third
row:  2s+ 1 + 2d2 + · · · 2ds−1 · · · 3 1

d1 · · · ds−1 0
0 · · · 0 0

 . (3.68)
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Note that matrix (3.68) may have zero entries. Then, in order to obtain a type R plane
partition, we add 1 to each entry of this matrix, obtaining: (2s+ 2) + 2d2 + · · · 2ds−1 · · · 4 2

1 + d1 · · · 1 + ds−1 1
1 · · · 1 1

 . (3.69)

This procedure can be easily reverted to get (3.65) again.
Now we can use the procedure described in the last subsection to associate a unique

type R plane partition to each matrix (3.69). The next theorem presents the result for
the mock theta function Φ1(q). In this theorem, we use the parameters from Figure 4
to describe the plane partitions.

Theorem 3.15. The mock theta function Φ1(q) is the generating function for type R
plane partitions satisfying:

i. λ1 = 1, λj − λj−1 = 1,

ii. y1 = ys+1 = 1, 0 ≤ |yj − yj+1| ≤ 1,

iii. xs+1 = 1, xs = 2, xs−1 = 4, xj − xj+1 = 2yj+2.

Proof.

Consider, for example, the third-order mock theta function:

Φ(q) =
∞∑
n=0

(−1)n(q; q2)nq
n2

(−q; q)2n
,

where (a; q)0 = 1 and (a; q)n =
∏n−1

k=0(1 − aqk) for any positive integer n. In [7] this
mock theta function was shown to be the generating function for two-line matrices of
the form (

c1 c2 c3 · · · cs
d1 d2 d3 · · · ds

)
(3.70)

with non-negative integer entries satisfying

cs = 0 and s even

ct = it + ct+1 + dt+1 where

{
it ∈ {1, 2}, if t is odd
it = 0, if t is even,∑

ct +
∑
dt = n

(3.71)
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and weight (−1)c1+d1 . From the restrictions in (3.71), we can rewrite matrix (3.70) as:(
i1 + i2 + i3 + · · · is−1 + d2 + · · · ds · · · is−1 + ds 0

d1 · · · ds−1 ds

)
. (3.72)

We associate a three-line matrix to (3.72) by subtracting it from the t-th entry in the
first row and putting it as the t-th entry of a new third row: i2 + · · ·+ is−1 + d2 + · · ·+ ds · · · ds 0

d1 · · · ds−1 ds
i1 · · · is−1 0

 . (3.73)

Note that matrix (3.73) may have zero entries. Then, in order to obtain a type R plane
partition, we add 1 to each entry of this matrix, obtaining: 1 + i2 + · · ·+ is−1 + d2 + · · ·+ ds · · · 1 + ds 1

1 + d1 · · · 1 + ds−1 1 + ds
1 + i1 · · · 1 + is−1 1

 . (3.74)

This procedure can be easily reverted to get (3.74) again.
Now we can use the procedure described in the last subsection to associate a unique

type R plane partition to each matrix (3.74). The next theorem presents the result for
the mock theta function Φ(q). In this theorem, we use the parameters from Figure 4
to describe the plane partitions.

Theorem 3.16. The mock theta function Φ(q) is the generating function for type R
plane partitions having weight (−1)x1+y2 satisfying:

i. an even number of different parts,

ii. λ1 = 1, λs+1 − λs = 1, 1 ≤ λj − λj−1 ≤ 3,

iii. y1 = 1, yj ≥ 1,

iv. xs+1 = 1, xs = 1, xj − xj+1 = λj+2 − λj+1 + yj+2 − 2.

Proof.

Consider, for example, the third-order mock theta function:

Ψ(q) =
∞∑
n=0

(−1)n(q; q2)nq
(n+1)2

(−q; q)2n+1

,
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where (a; q)0 = 1 and (a; q)n =
∏n−1

k=0(1 − aqk) for any positive integer n. In [7] this
mock theta function was shown to be the generating function for two-line matrices of
the form (

c1 c2 c3 · · · cs
d1 d2 d3 · · · ds

)
(3.75)

with non-negative integer entries satisfying

cs = 1 and s odd

ct = it + ct+1 + dt+1 where

{
it ∈ {1, 2}, if t odd
it = 0, otherwise,∑

ct +
∑
dt = n

(3.76)

and weight (−1)c1+d1−1, if s ̸= 1, (−1)1+d1 , if s = 1,. From the restrictions in (3.76), we
can rewrite matrix (3.75) as:(

i1 + i2 + i3 + · · · is−1 + d2 + · · · ds · · · 1 + is−1 + ds 1
d1 · · · ds−1 ds

)
. (3.77)

We associate a three-line matrix to (3.77) by subtracting it from the t-th entry in the
first row and putting it as the t-th entry of a new third row: 1 + i2 + · · ·+ is−1 + d2 + · · ·+ ds · · · 1 + ds 1

d1 · · · ds−1 ds
i1 · · · is−1 0

 . (3.78)

Note that matrix (3.78) may have zero entries. Then, in order to obtain a type R plane
partition, we add 1 to each entry of this matrix, obtaining: 2 + i2 + · · ·+ is−1 + d2 + · · ·+ ds · · · 2 + ds 2

1 + d1 · · · 1 + ds−1 1 + ds
1 + i1 · · · 1 + is−1 1

 . (3.79)

This procedure can be easily reverted to get (3.79) again.
Now we can use the procedure described in the last subsection to associate a unique

type R plane partition to each matrix (3.79). The next theorem presents the result for
the mock theta function Ψ(q). In this theorem, we use the parameters from Figure 4
to describe the plane partitions.

Theorem 3.17. The mock theta function Ψ(q) is the generating function for type R
plane partitions having weight (−1)x1+λ2+y2, if s ̸= 1, (−1)y2, if s = 1, and satisfying:

i. an odd number of different parts,
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ii. λ1 = 1, λs+1 − λs = 1, 1 ≤ λj − λj−1 ≤ 3,

iii. y1 = 1, yj ≥ 1,

iv. xs+1 = 1, xs = 2, xj − xj+1 = λj+2 − λj+1 + yj+2 − 2.

Proof.

Consider, for example, the third-order mock theta function:

ρ(q) =
∞∑
n=0

(−1)n(−q; q)nq(
n+1
2 )

(q; q2)n+1

,

where (a; q)0 = 1 and (a; q)n =
∏n−1

k=0(1 − aqk) for any positive integer n. In [7] this
mock theta function was shown to be the generating function for two-line matrices of
the form (

c1 c2 c3 · · · cs
d1 d2 d3 · · · ds

)
(3.80)

with non-negative integer entries satisfying

cs = 0
ct = it + ct+1 + 2dt+1 where it ∈ {1, 2},∑
ct +

∑
dt = n

(3.81)

From the restrictions in (3.81), we can rewrite matrix (3.80) as:(
i1 + i2 + i3 + · · · is−1 + 2d2 + · · · 2ds · · · is−1 + 2ds 0

d1 · · · ds−1 ds

)
. (3.82)

We associate a three-line matrix to (3.82) by subtracting it from the t-th entry in the
first row and putting it as the t-th entry of a new third row: i2 + · · ·+ is−1 + 2d2 + · · ·+ 2ds · · · 2ds 0

d1 · · · ds−1 ds
i1 · · · is−1 0

 . (3.83)

Note that matrix (3.83) may have zero entries. Then, in order to obtain a type R plane
partition, we add 1 to each entry of this matrix, obtaining: 1 + i2 + · · ·+ is−1 + 2d2 + · · ·+ 2ds · · · 1 + 2ds 1

1 + d1 · · · 1 + ds−1 1 + ds
1 + i1 · · · 1 + is−1 1

 . (3.84)
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This procedure can be easily reverted to get (3.84) again.
Now we can use the procedure described in the last subsection to associate a unique

type R plane partition to each matrix (3.84). The next theorem presents the result for
the mock theta function ρ(q). In this theorem, we use the parameters from Figure 4 to
describe the plane partitions.

Theorem 3.18. The mock theta function ρ(q) is the generating function for type R
plane partitions satisfying:

i. λ1 = 1, λs+1 − λs = 1, 2 ≤ λj − λj−1 ≤ 3,

ii. y1 = 1, yj ≥ 1,

iii. xs+1 = 1, xs = 1, xj − xj+1 = λj+2 − λj+1 + 2yj+2 − 3.

Proof.

Consider, for example, the third-order mock theta function:

σ(q) =
∞∑
n=0

(−1)n(−q; q)nq(
n+2
2 )

(q; q2)n+1

,

where (a; q)0 = 1 and (a; q)n =
∏n−1

k=0(1 − aqk) for any positive integer n. In [7] this
mock theta function was shown to be the generating function for two-line matrices of
the form (

c1 c2 c3 · · · cs
d1 d2 d3 · · · ds

)
(3.85)

with non-negative integer entries satisfying

cs = 1
ct = it + ct+1 + 2dt+1 where it ∈ {1, 2},∑
ct +

∑
dt = n

(3.86)

From the restrictions in (3.86), we can rewrite matrix (3.85) as:(
1 + i1 + i2 + i3 + · · · is−1 + 2d2 + · · · 2ds · · · 1 + is−1 + 2ds 1

d1 · · · ds−1 ds

)
. (3.87)

We associate a three-line matrix to (3.87) by subtracting it from the t-th entry in the
first row and putting it as the t-th entry of a new third row: 1 + i2 + · · ·+ is−1 + 2d2 + · · ·+ 2ds · · · 1 + 2ds 1

d1 · · · ds−1 ds
i1 · · · is−1 0

 . (3.88)
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Note that matrix (3.88) may have zero entries. Then, in order to obtain a type R plane
partition, we add 1 to each entry of this matrix, obtaining: 2 + i2 + · · ·+ is−1 + 2d2 + · · ·+ 2ds · · · 2 + 2ds 2

1 + d1 · · · 1 + ds−1 1 + ds
1 + i1 · · · 1 + is−1 1

 . (3.89)

This procedure can be easily reverted to get (3.89) again.
Now we can use the procedure described in the last subsection to associate a unique

type R plane partition to each matrix (3.89). The next theorem presents the result for
the mock theta function σ(q). In this theorem, we use the parameters from Figure 4 to
describe the plane partitions.

Theorem 3.19. The mock theta function σ(q) is the generating function for type R
plane partitions satisfying:

i. λ1 = 1, λs+1 − λs = 1, 2 ≤ λj − λj−1 ≤ 3,

ii. y1 = 1, yj ≥ 1,

iii. xs+1 = 1, xs = 2, xj − xj+1 = λj+2 − λj+1 + 2yj+2 − 3.

Proof.

Consider, for example, the third-order mock theta function:

λ(q) =
∞∑
n=0

(−1)nqn(q; q2)n
(−q; q)n

,

where (a; q)0 = 1 and (a; q)n =
∏n−1

k=0(1 − aqk) for any positive integer n. In [7] this
mock theta function was shown to be the generating function for two-line matrices of
the form (

c1 c2 c3 · · · cs
d1 d2 d3 · · · ds

)
(3.90)

with non-negative integer entries satisfying

cs = 1 + is, is ≥ 0,
ct = it + ct+1 + 2dt+1 where it ≥ 0
dt ∈ {0, 1}∑
ct +

∑
dt = n

(3.91)
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and weight (−1)s−1+c1+
∑s

i=1 di . From the restrictions in (3.91), we can rewrite matrix
(3.122) as:(

1 + i1 + i2 + i3 + · · · is−1 + 2d2 + · · · 2ds + is · · · 1 + is−1 + 2ds + is 1 + is
d1 · · · ds−1 ds

)
. (3.92)

We associate a three-line matrix to (3.92) by subtracting it from the t-th entry in the
first row and putting it as the t-th entry of a new third row: 1 + i2 + · · ·+ is−1 + 2d2 + · · ·+ 2ds + is · · · 1 + 2ds + is 1

d1 · · · ds−1 ds
i1 · · · is−1 is

 . (3.93)

Note that matrix (3.93) may have zero entries. Then, in order to obtain a type R plane
partition, we add 1 to each entry of this matrix, obtaining: 2 + i2 + · · ·+ is−1 + 2d2 + · · ·+ 2ds + is · · · 2 + 2ds + is 2

1 + d1 · · · 1 + ds−1 1 + ds
1 + i1 · · · 1 + is−1 1 + is

 . (3.94)

This procedure can be easily reverted to get (3.99) again.
Now we can use the procedure described in the last subsection to associate a unique

type R plane partition to each matrix (3.99). The next theorem presents the result for
the mock theta function λ(q). In this theorem, we use the parameters from Figure 4 to
describe the plane partitions.

Theorem 3.20. The mock theta function λ(q) is the generating function for type R
plane partitions having weight (−1)x1+λ2−λ1+

∑s+1
t=2 yt, and satisfying

i. λ1 = 1, λj − λj−1 ≥ 1,

ii. y1 = 1, 0 ≤ |yj − yj+1| ≤ 1,

iii. xs+1 = 1, xs = 2, xj − xj+1 = λj+2 − λj+1 + 2yj+2 − 3.

Proof.

Consider, for example, the third-order mock theta function:

γ(q) =
∞∑
n=0

qn
2
(q; q)n

(q3; q3)n
,
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where (a; q)0 = 1 and (a; q)n =
∏n−1

k=0(1 − aqk) for any positive integer n. In [7] this
mock theta function was shown to be the generating function for two-line matrices of
the form (

c1 c2 c3 · · · cs
d1 d2 d3 · · · ds

)
(3.95)

with non-negative integer entries satisfying

cs ∈ {1, 2}
ct = it + ct+1 + dt+1 where it ∈ {2, 3}
3 | dt∑
ct +

∑
dt = n

(3.96)

and weight (−1)1+c1+
∑s

i=2 di . From the restrictions in (3.91), we can rewrite matrix
(3.122) as:(

i1 + i2 + i3 + · · · is−1 + 3d2 + · · · 3ds + cs · · · is−1 + 3ds + cs cs
3d1 · · · 3ds−1 3ds

)
. (3.97)

We associate a three-line matrix to (3.97) by subtracting it from the t-th entry in the
first row and putting it as the t-th entry of a new third row: i2 + · · ·+ is−1 + 3d2 + · · ·+ 3ds + cs · · · 3ds + cs cs

3d1 · · · 3ds−1 3ds
i1 · · · is−1 0

 . (3.98)

Note that matrix (3.98) may have zero entries. Then, in order to obtain a type R plane
partition, we add 1 to each entry of this matrix, obtaining: 1 + i2 + · · ·+ is−1 + 3d2 + · · ·+ 3ds + cs · · · 1 + 3ds + cs 1 + cs

1 + 3d1 · · · 1 + 3ds−1 1 + 3ds
1 + i1 · · · 1 + is−1 1

 . (3.99)

This procedure can be easily reverted to get (3.99) again.
Now we can use the procedure described in the last subsection to associate a unique

type R plane partition to each matrix (3.99). The next theorem presents the result for
the mock theta function γ(q). In this theorem, we use the parameters from Figure 4 to
describe the plane partitions.

Theorem 3.21. The mock theta function γ(q) is the generating function for type R
plane partitions having weight (−1)x1+λ2−λ1−1+ 1

3
(−(s−1)+

∑s
t=2 yt+1), and satisfying

i. λ1 = 1, λs+1 − λs = 1, 2 ≤ λj − λj−1 ≤ 3,
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ii. y1 = 1, yj ≡ 1 (mod 3),

iii. xs+1 = 1, 2 ≤ xs ≤ 3, xj − xj+1 = λj+2 − λj+1 + 3yj+2 − 4.

Proof.

Consider, for example, the third-order mock theta function:

F0(q) =
∞∑
n=0

qn
2

(qn+1; q)n
,

where (a; q)0 = 1 and (a; q)n =
∏n−1

k=0(1 − aqk) for any positive integer n. In [7] this
mock theta function was shown to be the generating function for two-line matrices of
the form (

c1 c2 c3 · · · cs
d1 d2 d3 · · · ds

)
(3.100)

with non-negative integer entries satisfying

cs = 1,
(s+ 1)|dt,
ct = 2 + ct+1 +

dt+1

s+1
,∑

ct +
∑
dt = n.

(3.101)

From the restrictions in (3.123), we can rewrite matrix (3.122) as:(
2s− 1 + e2 + · · ·+ es · · · 3 + es 1

(s+ 1)e1 · · · (s+ 1)es−1 (s+ 1)es

)
, (3.102)

where dt = (s+ 1)et. We associate a three-line matrix to (3.124) un the following way: 2s+ e2 + · · ·+ es · · · 4 + es 2
1 + (s+ 1)e1 · · · 1 + (s+ 1)es−1 1 + (s+ 1)es

1 · · · 1 1

 . (3.103)

This procedure can be easily reverted to get (3.126) again.
Now we can use the procedure described in the last subsection to associate a unique

type R plane partition to each matrix (3.126). The next theorem presents the result
for the mock theta function F0(q). In this theorem, we use the parameters from Figure
4 to describe the plane partitions.

Theorem 3.22. The mock theta function F0(q) is the generating function for type R
plane partitions satisfying
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i. λ1 = 1, λj − λj−1 = 1,

ii. y1 = 1, yj ≡ 1(mod m), where m is the number of different summands,

iii. xs+1 = 1, xs = 2, xj − xj+1 = 2 +
yj+2−1

m
.

Proof.

Consider, for example, the third-order mock theta function:

F1(q) =
∞∑
n=0

qn
2

(qn; q)n
,

where (a; q)0 = 1 and (a; q)n =
∏n−1

k=0(1 − aqk) for any positive integer n. In [7] this
mock theta function was shown to be the generating function for two-line matrices of
the form (

c1 c2 c3 · · · cs
d1 d2 d3 · · · ds

)
(3.104)

with non-negative integer entries satisfying

cs = 1,
s|dt,
ct = 2 + ct+1 +

dt+1

s
,∑

ct +
∑
dt = n.

(3.105)

From the restrictions in (3.123), we can rewrite matrix (3.122) as:(
2s− 1 + e2 + · · ·+ es · · · 3 + es 1

se1 · · · ses−1 ses

)
, (3.106)

where dt = set. We associate a three-line matrix to (3.124) un the following way: 2s+ e2 + · · ·+ es · · · 4 + es 2
1 + se1 · · · 1 + ses−1 1 + ses

1 · · · 1 1

 . (3.107)

This procedure can be easily reverted to get (3.126) again.
Now we can use the procedure described in the last subsection to associate a unique

type R plane partition to each matrix (3.126). The next theorem presents the result
for the mock theta function F1(q). In this theorem, we use the parameters from Figure
4 to describe the plane partitions.
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Theorem 3.23. The mock theta function F1(q) is the generating function for type R
plane partitions satisfying

i. λ1 = 1, λj − λj−1 = 1,

ii. y1 = 1, yj ≡ 1(mod m− 1), where m is the number of different summands,

iii. xs+1 = 1, xs = 2, xj − xj+1 = 2 +
yj+2−1

m−1
.

Proof.

Consider, for example, the third-order mock theta function:

F2(q) =
∞∑
n=0

qn
2+n

(qn+1; q)n+1

,

where (a; q)0 = 1 and (a; q)n =
∏n−1

k=0(1 − aqk) for any positive integer n. In [7] this
mock theta function was shown to be the generating function for two-line matrices of
the form (

c1 c2 c3 · · · cs
d1 d2 d3 · · · ds

)
(3.108)

with non-negative integer entries satisfying

cs = 0,
s|dt,
ct = 2 + ct+1 +

dt+1

s
,∑

ct +
∑
dt = n.

(3.109)

From the restrictions in (3.123), we can rewrite matrix (3.122) as:(
2(s− 1) + e2 + · · ·+ es · · · 3 + es 0

se1 · · · ses−1 ses

)
, (3.110)

where dt = set. We associate a three-line matrix to (3.124) un the following way: 2s− 1 + e2 + · · ·+ es · · · 3 + es 1
1 + se1 · · · 1 + ses−1 1 + ses

1 · · · 1 1

 . (3.111)

This procedure can be easily reverted to get (3.126) again.
Now we can use the procedure described in the last subsection to associate a unique

type R plane partition to each matrix (3.126). The next theorem presents the result
for the mock theta function F2(q). In this theorem, we use the parameters from Figure
4 to describe the plane partitions.
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Theorem 3.24. The mock theta function F2(q) is the generating function for type R
plane partitions satisfying

i. λ1 = 1, λj − λj−1 = 1,

ii. y1 = 1, yj ≡ 1(mod m− 1), where m is the number of different summands,

iii. xs+1 = 1 = xs, xj − xj+1 = 2 +
yj+2−1

m−1
.

Proof.

Consider, for example, the third-order mock theta function:

S0(q) =
∞∑
n=0

qn
2
(−q; q2)n

(−q2; q2)n
,

where (a; q)0 = 1 and (a; q)n =
∏n−1

k=0(1 − aqk) for any positive integer n. In [7] this
mock theta function was shown to be the generating function for two-line matrices of
the form (

c1 c2 c3 · · · cs
d1 d2 d3 · · · ds

)
(3.112)

with non-negative integer entries satisfying

cs ∈ {1, 2}
2|dt,

ct =


2 + ct+1 + dt+1, if ct ≡ ct+1 ≡ 1(mod 2)
3 + ct+1 + dt+1, if ct ̸≡ ct+1(mod 2)
4 + ct+1 + dt+1, if ct ≡ ct+1 ≡ 0(mod 2)∑

ct +
∑
dt = n,

(3.113)

and having height (−1)
1
2

∑s
t=1 dt . We rewrite conditions (3.123) as:

cs = 1 + is, is ∈ {0, 1}
dt = 2et,
ct = 2 + it + ct+1 + 2et+1, t = 1, . . . , s− 1, it ∈ {0, 1, 2},

where it =


0, if ct ≡ ct+1 ≡ 1(mod 2)
1, if ct ̸≡ ct+1(mod 2)
2, if ct ≡ ct+1 ≡ 0(mod 2)∑

ct +
∑
dt = n,

(3.114)
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and weight given by (−1)
∑s

t=1 et . From the restrictions in (3.114), we can rewrite matrix
(3.122) as:(

2s− 1 + i1 + · · ·+ is−1 + is + 2e2 + · · ·+ 2es · · · 3 + is−1 + is + 2es 1 + is
2e1 · · · 2es−1 2es

)
.

(3.115)

We associate a three-line matrix to (3.124) un the following way: 2s+ i2 + · · ·+ is−1 + is + 2e2 + · · ·+ 2es · · · 4 + is + 2es 2
1 + 2e1 · · · 1 + 2es−1 1 + 2es
1 + i1 · · · 1 + is−1 1 + is

 . (3.116)

This procedure can be easily reverted to get (3.126) again.
Now we can use the procedure described in the last subsection to associate a unique

type R plane partition to each matrix (3.126). The next theorem presents the result
for the mock theta function S0(q). In this theorem, we use the parameters from Figure
4 to describe the plane partitions.

Theorem 3.25. The mock theta function S0(q) is the generating function for type R
plane partitions having weight (−1)

1
2

∑s
j=1(yj−1) and satisfying:

i. λ1 = 1, λs+1 − λs ∈ {1, 2},

ii. y1 = 1, yj ≡ 1(mod 2),

iii. xs+1 = 1, xs = 2, xj − xj+1 = λj+2 − λj+1 + yj+2.

iv. λj+1 − λj = 1 + rj, where

rj =


0, if xj + λj+1 − λj ≡ xj+1 + λj+2 − λj+1 ≡ 1(mod 2)
1, if xj + λj+1 − λj ̸≡ xj+1 + λj+2 − λj+1(mod 2)
2, if xj + λj+1 − λj ≡ xj+1 + λj+2 − λj+1 ≡ 0(mod 2)

Proof.
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Consider, for example, the third-order mock theta function:

T0(q) =
∞∑
n=0

q(n+2)(n+1)(−q2; q2)n
(−q; q2)n+1

,

where (a; q)0 = 1 and (a; q)n =
∏n−1

k=0(1 − aqk) for any positive integer n. In [7] this
mock theta function was shown to be the generating function for two-line matrices of
the form (

c1 c2 c3 · · · cs
d1 d2 d3 · · · ds

)
(3.117)

with non-negative integer entries satisfying

cs = 2
ct = it + ct+1 + 2dt+1 where it ∈ {2, 4},∑
ct +

∑
dt = n

(3.118)

and weight (−1)n. From the restrictions in (3.123), we can rewrite matrix (3.122) as:(
i1 + i2 + i3 + · · · is−1 + 2d2 + · · · 2ds + 2 · · · is−1 + 2ds + 2 2

d1 · · · ds−1 ds

)
. (3.119)

We associate a three-line matrix to (3.124) by subtracting it from the t-th entry in the
first row and putting it as the t-th entry of a new third row: i2 + · · ·+ is−1 + 2d2 + · · ·+ 2ds + 2 · · · 2ds + 2 2

d1 · · · ds−1 ds
i1 · · · is−1 0

 . (3.120)

Note that matrix (3.125) may have zero entries. Then, in order to obtain a type R
plane partition, we add 1 to each entry of this matrix, obtaining: 3 + i2 + · · ·+ is−1 + 2d2 + · · ·+ 2ds · · · 3 + 2ds 3

1 + d1 · · · 1 + ds−1 1 + ds
1 + i1 · · · 1 + is−1 1

 . (3.121)

This procedure can be easily reverted to get (3.126) again.
Now we can use the procedure described in the last subsection to associate a unique

type R plane partition to each matrix (3.126). The next theorem presents the result
for the mock theta function T0(q). In this theorem, we use the parameters from Figure
4 to describe the plane partitions.

Theorem 3.26. The mock theta function T0(q) is the generating function for type R
plane partitions having weight (−1)−3s−1+λs+1+

∑s
t=1 xt+yt+1, and satisfying
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i. λ1 = 1, λs+1 − λs = 1, 3 ≤ λj − λj−1 ≤ 5,

ii. y1 = 1, yj ≥ 1,

iii. xs+1 = 1, xs = 3, xj − xj+1 = λj+2 − λj+1 + 2yj+2 − 3.

Proof.

Consider, for example, the third-order mock theta function:

T1(q) =
∞∑
n=0

qn(n+1)(−q2; q2)n
(−q; q2)n+1

,

where (a; q)0 = 1 and (a; q)n =
∏n−1

k=0(1 − aqk) for any positive integer n. In [7] this
mock theta function was shown to be the generating function for two-line matrices of
the form (

c1 c2 c3 · · · cs
d1 d2 d3 · · · ds

)
(3.122)

with non-negative integer entries satisfying

cs = 0
ct = it + ct+1 + 2dt+1 where it ∈ {2, 4},∑
ct +

∑
dt = n

(3.123)

and weight (−1)n. From the restrictions in (3.123), we can rewrite matrix (3.122) as:(
i1 + i2 + i3 + · · · is−1 + 2d2 + · · · 2ds · · · is−1 + 2ds 0

d1 · · · ds−1 ds

)
. (3.124)

We associate a three-line matrix to (3.124) by subtracting it from the t-th entry in the
first row and putting it as the t-th entry of a new third row: i2 + · · ·+ is−1 + 2d2 + · · ·+ 2ds · · · 2ds 0

d1 · · · ds−1 ds
i1 · · · is−1 0

 . (3.125)

Note that matrix (3.125) may have zero entries. Then, in order to obtain a type R
plane partition, we add 1 to each entry of this matrix, obtaining: 1 + i2 + · · ·+ is−1 + 2d2 + · · ·+ 2ds · · · 1 + 2ds 1

1 + d1 · · · 1 + ds−1 1 + ds
1 + i1 · · · 1 + is−1 1

 . (3.126)
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This procedure can be easily reverted to get (3.126) again.
Now we can use the procedure described in the last subsection to associate a unique

type R plane partition to each matrix (3.126). The next theorem presents the result
for the mock theta function T1(q). In this theorem, we use the parameters from Figure
4 to describe the plane partitions.

Theorem 3.27. The mock theta function T1(q) is the generating function for type R
plane partitions having weight (−1)−3s−1+λs+1+

∑s
t=1 xt+yt+1, and satisfying

i. λ1 = 1, 3 ≤ λj − λj−1 ≤ 5,

ii. y1 = 1, yj ≥ 1,

iii. xs+1 = 1, xs = 1, xj − xj+1 = λj+2 − λj+1 + 2yj+2 − 3.

Proof.

4 Summary of the results

Having described in the last sections how we can obtain representations for the mock
theta functions in terms of type R plane partitions, we summarize the results in the
table below. The first column shows the mock theta functions. Column 2 presents the
restrictions of the corresponding type R plane partitions. The last column gives the
weight of the plane partitions.
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mock theta function type R plane partitions weight

f(q) =
∞∑

n=0

qn
2

(−q ; q)2n

λ1 = 1, λj+1 − λj ≥ 1,
y1 = 1, yj ≥ 1,
xs+1 = 1, xs = 2,
xj − xj+1 = yj+2 + λj+2 − λj+1

(−1)y2−x1−λ2+λ1

ϕ(q) =
∞∑

n=0

qn
2

(−q2 ; q2)n

λ1 = 1, λj − λj−1 = 1,
y1 = 1, yj ≡ 1(mod 2),
xs+1 = 1, xs = 2,
xj − xj+1 = 1 + yj+1

(−1)
1
2
(−s+(

∑s+1
t=2 yt))

ψ(q) =
∞∑

n=1

qn
2

(q ; q2)n

λ1 = 1, λj − λj−1 = 1,
y1 = 1, yj ≥ 1,
xs+1 = 1, xs = 2,
xj − xj+1 = 2yj+1

χ(q) =
∞∑

n=0

(−q ; q)nqn
2

(−q3 ; q3)n

λ1 = 1, 3 ≤ λj − λj−1 ≤ 4,
y1 = 1, yj ≡ 1(mod 3),
xs+1 = 1, xs = 1,
xj − xj+1 = λj+2 − λj+1 + yj+2 − 2

(−1)
1
3
(−s+(

∑s+1
t=2 yt))

qω(q)1 =
∞∑

n=0

q2n(n+1)+1

(q ; q2)2n+1

λ1 = 1,
λj − λj−1 = 1,
y1 = 1, yj ≥ 1, xj ≡ 0(mod 2)
xs+1 = 1, xs = 2,
xj − xj+1 = 2(yj+1 − 1)

ν(q) =
∞∑

n=0

qn(n+1)

(−q ; q2)n+1

λ1 = 1, λj − λj−1 = 1,
y1 = 1, yj ≥ 1,
xs+1 = 1,
xs = 1, xj − xj+1 = 2yj+2 − 1

(−1)
∑s

t=1 xt+yt+1

ρ(q) =
∞∑

n=0

(q ; q2)n+1q2n(n+1)

(q3 ; q6)n+1

λ1 = 1, 1 ≤ λj − λj−1 ≤ 3, 1 ≤ λs−1 − λs ≤ 2,
y1 = 1, yj ≡ 1(mod 3),
xs+1 = 1, xs = 1,
xj − xj+1 = 2 + λj+2 − λj+1 + yj+2

f0(q) =
∞∑

n=0

qn
2

(−q ; q)n

λ1 = 1, λj − λj−1 = 1,
y1 = 1, yj ≥ 1,
xs+1 = 1, xs = 2,
xj − xj+1 = 1 + yj+2

(−1)(−s+(
∑s+1

t=2 yt))

F0(q) =
∞∑

n=0

q2n
2

(q ; q2)n

λ1 = 1, λj − λj−1 = 1,
y1 = 1, yj ≥ 1,
xs+1 = 1, xs = 3,
xj − xj+1 = yj+2 + 3

Ψ0(q) =

1 +
1

2

∞∑
n=1

(−1 ; q)nq

(
n+1
2

) λ1 = 1, λj − λj−1 = 1,
y1 = 1, ys+1 = 1, 0 ≤ |yj − yj+1| ≤ 1,
xs+1 = 1, xs = 2,
xs−1 = 3, xj − xj+1 = yj+2

Φ0(q) =
∞∑

n=0

(−q ; q2)nqn
2

λ1 = 1, λj − λj−1 = 1,
y1 = 1, 0| ≤ yj − yj+1| ≤ 1,
xs+1 = 1, 2 ≤ xs ≤ 3,
xj − xj+1 = 2(yj+2)

f1(q) =
∞∑

n=0

qn
2+n

(−q ; q)n

λ1 = 1, λj − λj−1 = 1,
y1 = 1, yj ≥ 1,
xs+1 = 1, xs = 3,
xj − xj+1 = yj+2 + 1

(−1)(−s+(
∑s+1

t=2 yt))

F1(q) =
∞∑

n=0

q2n
2+2n

(q ; q2)n+1

λ1 = 1, λj − λj−1 = 1,
y1 = 1, yj ≥ 1,
xs+1 = 1, xs = 1,
xj − xj+1 = 2 + 2yj+2

1See Remark 1 after this table
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Ψ1(q) =
∞∑

n=0

(−q ; q)nq
(
n+1
2

) λ1 = 1, λj − λj−1 = 1,
y1 = 1, 0| ≤ yj − yj+1| ≤ 1,
xs+1 = 1, xs = 2,
xj − xj+1 = yj+2

Φ1(q)=
∞∑

n=0

(−q; q2)nq(n+1)2

λ1 = 1, λj − λj−1 = 1,
y1 = ys+1 = 1, 0 ≤ |yj − yj+1| ≤ 1,
xs+1 = 1, xs = 2, xs−1 = 4,
xj − xj+1 = 2yj+2

Φ(q) =
∞∑

n=0

(−1)n(q ; q2)nqn
2

(−q ; q)2n

an even number of different parts,
λ1 = 1, λs+1 − λs = 1, 1 ≤ λj − λj−1 ≤ 3,
y1 = 1, yj ≥ 1,
xs+1 = 1, xs = 1,
xj − xj+1 = λj+2 − λj+1 + yj+2 − 2

(−1)x1+y2

Ψ(q) =
∞∑

n=0

(−1)n(q ; q2)nq(n+1)2

(−q ; q)2n+1

an odd number of different parts,
λ1 = 1, λs+1 − λs = 1, 1 ≤ λj − λj−1 ≤ 3,
y1 = 1, yj ≥ 1,
xs+1 = 1, xs = 2,
xj − xj+1 = λj+2 − λj+1 + yj+2 − 2

(−1)x1+λ2+y2

if s ̸= 1;
(−1)y2

if s = 1

ρ(q) =

∞∑
n=0

(−q ; q)nq
(
n+1
2

)
(q ; q2)n+1

λ1 = 1, λs+1 − λs = 1, 2 ≤ λj − λj−1 ≤ 3,
y1 = 1, yj ≥ 1,
xs+1 = 1, xs = 1,
xj − xj+1 = λj+2 − λj+1 + 2yj+2 − 3

σ(q) =

∞∑
n=0

(−q ; q)nq
(
n+2
2

)
(q ; q2)n+1

λ1 = 1, λs+1 − λs = 1, 2 ≤ λj − λj−1 ≤ 3,
y1 = 1, yj ≥ 1,
xs+1 = 1, xs = 2,
xj − xj+1 = λj+2 − λj+1 + 2yj+2 − 3

λ(q) =
∞∑

n=0

(−1)n(q ; q2)nqn

(−q ; q)n

λ1 = 1, λj − λj−1 ≥ 1,
y1 = 1, 0 ≤ |yj − yj+1| ≤ 1,
xs+1 = 1, xs = 2,
xj − xj+1 = λj+2 − λj+1 + 2yj+2 − 3

(−1)x1+λ2−λ1+
∑s+1

t=2 yt

γ(q) =
∞∑

n=0

(q ; q)nqn
2

(q3 ; q3)n

λ1 = 1, λs+1 − λs = 1, 2 ≤ λj − λj−1 ≤ 3,
y1 = 1, yj ≡ 1 (mod 3),
xs+1 = 1, 2 ≤ xs ≤ 3,
xj − xj+1 = λj+2 − λj+1 + 3yj+2 − 4

(−1)x1+λ2+
1
3
(−(s−1)+

∑s
t=2 yt+1)

F0(q) =
∞∑

n=0

qn
2

(qn+1 ; q)n

λ1 = 1, λj − λj−1 = 1,
y1 = 1, yj ≡ 1(mod m),
where m is the number of different summands,

xs+1 = 1, xs = 2, xj − xj+1 = 2 +
yj+2−1

m

F1(q) =
∞∑

n=0

qn
2

(qn ; q)n

λ1 = 1, λj − λj−1 = 1,
y1 = 1, yj ≡ 1(mod m− 1),
where m is the number of different summands,

xs+1 = 1, xs = 2, xj − xj+1 = 2 +
yj+2−1

m−1

F2(q) =
∞∑

n=0

qn
2+n

(qn+1 ; q)n+1

λ1 = 1, λj − λj−1 = 1,
y1 = 1, yj ≡ 1(mod m− 1),
where m is the number of different summands,

xs+1 = 1 = xs, xj − xj+1 = 2 +
yj+2−1

m−1
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S0(q) =
∞∑

n=0

qn
2
(−q ; q2)n

(−q2 ; q2)n

λ1 = 1, λs+1 − λs ∈ {1, 2},
y1 = 1, yj ≡ 1(mod 2),
xs+1 = 1, xs = 2, xj − xj+1 = λj+2 − λj+1 + yj+2,
λj+1 − λj = 1 + rj ,where rj =0, if xj + λj+1 − λj ≡ xj+1 + λj+2 − λj+1 ≡ 1(mod 2)
1, if xj + λj+1 − λj ̸≡ xj+1 + λj+2 − λj+1(mod 2)
2, if xj + λj+1 − λj ≡ xj+1 + λj+2 − λj+1 ≡ 0(mod 2)

(−1)
1
2

∑s+1
j=2(yj−1)

S1(q) =
∞∑

n=0

qn(n+2)(−q ; q2)n
(−q2 ; q2)n

λ1 = 1, λs+1 − λs ∈ {1, 2},
y1 = 1, ys+1 ≥ 3, yj ≡ 1(mod 2),
xs+1 = 1, xs = 2, xj − xj+1 = λj+2 − λj+1 + yj+2,
λj+1 − λj = 1 + rj ,where rj =0, if xj + λj+1 − λj ≡ xj+1 + λj+2 − λj+1 ≡ 1(mod 2)
1, if xj + λj+1 − λj ̸≡ xj+1 + λj+2 − λj+1(mod 2)
2, if xj + λj+1 − λj ≡ xj+1 + λj+2 − λj+1 ≡ 0(mod 2)

(−1)
1+ 1

2

∑s+1
j=2(yt−1)

T0(q)=
∞∑

n=0

q(n+1)(n+2)(−q2; q2)n
(−q ; q2)n+1

λ1 = 1, λs+1 − λs = 1, 3 ≤ λj − λj−1 ≤ 5,
y1 = 1, yj ≥ 1,
xs+1 = 1, xs = 3,
xj − xj+1 = λj+2 − λj+1 + 2yj+2 − 3

(−1)−3s−1+λs+1+
∑s

t=1 xt+yt+1

T1(q) =
∞∑

n=0

qn(n+1)(−q2 ; q2)n
(−q ; q2)n+1

λ1 = 1, 3 ≤ λj − λj−1 ≤ 5,
y1 = 1, yj ≥ 1,
xs+1 = 1, xs = 1,
xj − xj+1 = λj+2 − λj+1 + 2yj+2 − 3

(−1)−3s−1+λs+1+
∑s

t=1 xt+yt+1

U0(q) =
∞∑

n=0

qn
2
(−q ; q2)n

(−q4 ; q4)n

λ1 = 1, λs+1 − λs ∈ {1, 2},
y1 = 1, yj ≡ 1(mod 4),
xs+1 = 1, xs = 2, xj − xj+1 = λj+2 − λj+1 + yj+2,
λj+1 − λj = 1 + rj ,where rj =0, if xj + λj+1 − λj ≡ xj+1 + λj+2 − λj+1 ≡ 1(mod 2)
1, if xj + λj+1 − λj ̸≡ xj+1 + λj+2 − λj+1(mod 2)
2, if xj + λj+1 − λj ≡ xj+1 + λj+2 − λj+1 ≡ 0(mod 2)

(−1)
1
4

∑s+1
j=2(yj−1)

U1(q) =
∞∑

n=0

q(n+1)2 (−q ; q2)n
(−q2 ; q4)n+1

λ1 = 1, λs+1 − λs = 1,
y1 = 1, yj ≡ 1(mod 2),
xs+1 = 1, xs = 2, xj − xj+1 = λj+2 − λj+1 + 2yj+2 − 1,
λj+1 − λj = 1 + rj ,where rj =0, if xj + λj+1 − λj ≡ xj+1 + λj+2 − λj+1 ≡ 1(mod 2)
1, if xj + λj+1 − λj ̸≡ xj+1 + λj+2 − λj+1(mod 2)
2, if xj + λj+1 − λj ≡ xj+1 + λj+2 − λj+1 ≡ 0(mod 2)

(−1)
1
2

∑s+1
j=2(yj−1)

1

2
(1 + V0(q)) =

∞∑
n=0

qn
2
(−q ; q2)n
(q ; q2)n

λ1 = 1, λs+1 − λs{1, 2},
y1 = 1, yj ≥ 1,
xs+1 = 1, xs = 1, xj − xj+1 = λj+2 − λj+1 + 2yj+2 − 1,
λj+1 − λj = 1 + rj ,where rj =0, if xj + λj+1 − λj ≡ xj+1 + λj+2 − λj+1 ≡ 1(mod 2)
1, if xj + λj+1 − λj ̸≡ xj+1 + λj+2 − λj+1(mod 2)
2, if xj + λj+1 − λj ≡ xj+1 + λj+2 − λj+1 ≡ 0(mod 2)

1

2
(1 + V0(q)) =

∞∑
n=0

q2n
2
(−q2 ; q4)n

(q ; q2)2n+1

an even number of summands
λ1 = 1, λs+1 − λs = 1,

λj+1 − λj

{
= 1, if j is even
∈ {3, 5}, if j is odd

y1 = 1, yj ≥ 1,
xs+1 = 1, xs = 1,

xj − xj+1 =

{
2yj+2 − 2, if j is even
λj+3 − λj+2 + 2yj+2 − 3, if j is odd
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V1(q) =
∞∑

n=0

q(n+1)2 (−q ; q2)n
(q ; q2)n+1

λ1 = 1, λs+1 − λs = 1,
y1 = 1, yj ≥ 1,
xs+1 = 1, xs = 1, xj − xj+1 = λj+2 − λj+1 + 2yj+2 − 1,
λj+1 − λj = 1 + rj ,where rj =0, if xj + λj+1 − λj ≡ xj+1 + λj+2 − λj+1 ≡ 1(mod 2)
1, if xj + λj+1 − λj ̸≡ xj+1 + λj+2 − λj+1(mod 2)
2, if xj + λj+1 − λj ≡ xj+1 + λj+2 − λj+1 ≡ 0(mod 2)

q−1V1(q) =

1

q

∞∑
n=0

q2n
2+2n+1(−q4 ; q4)n
(q ; q2)2n+2

an odd number of summands
λ1 = 1, λs+1 − λs = 1,

λj+1 − λj

{
= 1, if j is odd
∈ {3, 5}, if j is even

y1 = 1, yj ≥ 1,
xs+1 = 1, xs = 1,

xj − xj+1 =

{
2yj+2 − 2, if j is odd
λj+3 − λj+2 + 2yj+2 − 3, if j is even
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