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Abstract

This note makes an attempt to point out some of the familiar situations occurring in
early number theory lessons.
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1 Introduction
(i) The set of natural numbers contains 1, 2, 3, 4, . . .; the positive integers used for

counting. This set is denoted by Z+.

(ii) A natural number ≥ 1 is either a prime or a product of prime numbers. An
element m ∈ Z+ is uniquely expressible as

m = pa11 · · · pa22 . . . pann (1.1)

where p1, p2, . . . pn are distinct primes.

(iii) By a prime p, one means that given a, b ∈ Z+, p divides ab implies that either p | a
or p | b or p | b, where | means ’divides’. (1.1) is refereed to as the prime-power
decomposition of m > 1.

(iv) In (1.1), the prime-power decomposition of m contains a prime factor p which is
least among the primes dividing n. That is, every integer n has a least prime
divisor.

(v) The set Z+ of positive integers forms a semi-group under multiplication.
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(vi) By adding 0 and negative integers to Z+, one gets the set Z of all integers (positive,
negative and zero). It is verified that (Z,+, ·) forms a commutative ring with
identity (or unity) element 1. That is, 1 · a = a · 1 = a, for a ∈ Z.

(vii) The formal definition of a ring R is the following:

A ring R is an ordered triple (R,+, ·) consisting of a nonempty set R and two
binary operations + and · defined on R such that

(a) (R,+) is an abelian group.

(b) (R, ·) is a semi-group and

(c) the operation (·) is distributive (on both sides) over the operation (+).

(viii)

Definition 1.1. A commutative ring R is a ring (R,+, ·) in which multiplication
is commutative: that is, for all a, b ∈ R a ·b = b ·a. It also means that the elements
a, b are commutative.

(ix) Given a ring (R,+, ·), 0 ̸= a ∈ R is called a left (right) zero divisor if there exists
b( ̸= 0) ∈ R such that a · b = 0 (b · a = 0). Further, a zero divisor of (R,+, ·) is
either a left or right zero divisor.

(x) A ring R is without zero divisors if, and only if, R satisfies the cancellation laws
for multiplication. That is, for all a, b ∈ R, a · b = a · c and b · a = c · a(where
a ̸= 0) imply that b = c.

(xi)

Definition 1.2. A commutative ring is an integral domain if, and only if, it has
no zero divisors.

(xii)

Definition 1.3. Let I be a non empty subset of a ring R, I is called a two-sided
ideal of k if, and only if,

(i) for a, b ∈ I, one has a− b ∈ I and

(ii) for r ∈ R and a ∈ I, the conclusion: ar ∈ I, ra ∈ I holds.

(xiii) Let (R,+, ·) be a commutative ring with unity. 1R. (R,+, ·) is called ‘simple’ if
it has no non-trial ideals.
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(xiv) Let (R,+, ·) be a commutative ring with unity. (R,+, ·) is called a principal ideal
ring if every ideal of (R,+, ·) is a principal ideal, that is, an ideal generated by
a single element. A principal ideal ring which is an integral domain is termed a
principal ideal domain (P.I.D).

(xv)

Definition 1.4. Let R be a commutative ring with unity 1R. An ideal I of the
ring R is said to be a maximal ideal provided that I ̸= R and whenever J is an
ideal of R with I ⊂ J ⊆ R, then J = R.

That is, the only ideal to contain a maximal ideal properly is the ring itself.

(xvi)

Notation. (I, a) denotes the ideal (of R) generated by the set I ∪ {a}.

Theorem 1.5. [1] R denotes a commutative ring with unity 1R. An ideal I of R is a
maximal ideal if, and only if, (I, a) = R for any a /∈ I.

Demonstração. The first observation is that (I, a) satisfies

I ⊂ (I, a) ⊆ R

If I where a maximal ideal of R, it would mean that (I, a) = R.
Conversely, suppose that J is an ideal of R, with the property that I ⊂ J ⊆ R. If

a ∈ J and a ̸= I, one would get I ⊂ (I, a) ⊆ J . The requirement that (I, a) = R would
force J = R. Then, it follows that I is a maximal ideal.

Next, let R be a commutative ring with unity 1R.

Theorem 1.6. [1a] Let {Ii} be a collection of ideals of R. Then ∩Ii is an ideal of R.

Demonstração. The intersection ∩Ii is non-empty, since each Ii contains the zero ele-
ment of the ring. Let a, b ∈ ∩Ii and r ∈ R. As each Ii is an ideal, a− b, ra, ar all lie in
Ii. This is true for every value of Ii. So, a − b, ra, ar all belong to ∩Ii making ∩Ii an
ideal of R.

Given a commutative ring R with unity 1R, let S be a nonempty subset of R. The
symbol (S) is used to denote

(S) = ∩{I : S ⊆ I : I an ideal of R}
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The collection of all ideals which contain S is nonempty, since R itself is an ideal of R.
By virtue of theorem 1.6, (S) forms an ideal and (S) ⊂ I. Further, (S) is the smallest
ideal of R containing S.

If S consists of a finite number of elements say a1, a2, . . . , an the ideal is said to
be finitely generated with ai(i = 1, . . . n) as its generators. An ideal (a) generated by
a ∈ R is called a principal ideal. The ring Z of integers is finitely generated and is
generated by 1.

Theorem 1.7. [1b] Let R be a commutative ring with unity 1R. If R is finitely gene-
rated, each proper ideal of R is contained in a maximal ideal.

Demonstração. Suppose that R is finitely generated by the elements a1, a2, . . . an. One
defines

A = {J : I ⊆ J, where J is a proper ideal of R}

A is nonempty, as I belongs to A
A chain {Ii} of ideals in A is introduced.

Claim. ∪Ii is again a member of A

The method of proof is as follows :
Let a, b ∈ ∪Ii and r ∈ R. Then there exists indices I and J for which a ∈ Ii, b ∈ Ij.

As the collection {Ii} forms a chain of ideals either Ii ⊆ Ij or Ij ⊆ Ii. For definiteness,
suppose that Ii ⊆ Ij. Let a, b ∈ Ij. Then, a− b ∈ Ij ⊆ ∪Ii. Also, the products ar and
ra ∈ Ii ⊆ ∪Ii. It follows that ∪Ii is an ideal of R.

Claim. ∪Ii is a proper ideal of R.

Suppose the contrary. Then, ∪Ii = R = (a1, a2, . . . , an), the ideal generated by
a1, . . . , an, since R is a finitely generated ring. Then, each generator ak would belong
to Iik of the chain {Ii}. As there are only finitely many Iik , one contains all others. Let
It be marked Ii′ . It follows that Ij′ = R, which is impossible. Further, I ⊆ ∪Ii. The
conclusion is that

∪Ii ∈ A.

Appealing to Zorn’s Lemma [1c], the family A contains a maximal element M . It
follows from the definition of A that M is a proper ideal of R with I ⊆ M .

Claim. M is a maximal ideal of R.

Let J be an ideal for which M ⊂ J ⊆ R. Since M is a maximal element of the family
A, J cannot belong to A. Then, J is an improper ideal and so J = R. The conclusion
is that M is a maximal ideal of R and this statement completes the proof.
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Theorem 1.8 (Krull-Zorn Theorem). [1d] In a ring R with unity 1R, each proper ideal
is contained in a maximal ideal.

Remark 1. In the ring Z of integers, every ideal is contained in a maximal ideal. But
the maximal ideals of Z are the ideals generated by primes. In other words, given an
integer n(> 1) ∈ Z, there exists a smallest prime p which divides n.

2 Simple rings
A ring which is not commutative is considered. Let R denote the field of real numbers.
Mn(R) denotes the set of n× n matrices with entries from IR (n > 1). As a notational
device, one writes Eij to denote an n × n matrix whose (i, j)th entry is 1 where j = i
and zeros elsewhere. It is verified that Mn(R) is a non-commutative ring with identity
element [δij] where

δij =

{
1; j = i;

0; otherwise.
(2.1)

Suppose that I ̸= [0] is an ideal of Mn(R). Then I will contain some nonzero matrix
[aij] (say) with an rs th entry ars ̸= 0. Since I is a two-sided ideal of Mn(R), the
product

Err[bij][aij]Ess

belongs to I where the matrix [bij] is chosen to have the element a−1
rs down its main

diagonal and zeros elsewhere. As a result of all the zero entries in the various factors ,
it is easy to check that this product is equal to Ers. Knowing this, the relation

Eij = EirErsEsj(i, j = 1, 2, . . .)

implies that all the n2 of the matrices Eij are contained in I. Grasping firmly the
situation, one notes that the identity matrix [δij] where

δij =

{
1; j = i;

0; otherwise.

could be written as
[δij] = E11 + E12 + · · ·+ Enn (*)

(*) leads to the conclusion that [δij] ∈ I.
Observing that in a ring with identity, no proper (right , left or two-sided) ideal I

contains the identity element,
I = Mn(R).
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In other words, Mn(R) possesses no nonzero proper ideals and thus Mn(R) is a simple
ring [1e].

3 Semi-simple Rings
A property of the set of positive integers is a fact that the set N of positive integers has
an infinite number of primes. The necessary ground-work has to be provided.
Let R be a commutative ring with unity.

Definition 3.1. An ideal I of the ring R is said to be a maximal ideal if I ̸= R and J
is an ideal of R with I ⊂ J ⊆ R, then J = R.

Theorem 3.2. In the ring Z of integers, maximal ideals correspond to those generated
by primes.

Demonstração. It is noted that Z is a principal ideal domain (PID). That is to say that
every ideal of Z is generated by an integer n(n ≥ 0). As Z has no divisors of zero, Z
is an integral domain in which every ideal is principal. Z is an example of a principal
ideal domain (PID).

It is known [1f] that if R is a finitely generated ring, then each ideal or R is contained
in a maximal ideal.

Definition 3.3. An ideal I of R (a commutative ring with unity) is called a prime ideal
if for all a, b ∈ R, ab ∈ I implies that either a ∈ I or b ∈ I.

This is the analogue of the result stated below.
In the set N of positive integers, if p is a prime dividing ab (where a, b are positive

integers), p divides ab implies either p divides a or p divides b.
It is noted that in a commutative ring with identity, every maximal ideal is a prime

ideal.

Definition 3.4. The Jacobson radical of a commutative ring R with unity denoted by
J(R) is the set

J(R) = ∩{M | M is a maximal ideal of R}

If J(R) = {0}, R is said to be a ring without Jacobson radical or R is a semi simple
ring.
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To show that the ring Z of integers is semi-simple the first observation is that the
maximal ideals of Z correspond to prime numbers.

It is noted that (Z,+, ·) is an integral domain in which every ideal is principal.
That is, (Z,+, ·) is a principal ideal domain (PID). Further, in (Z,+, ·) maximal ideals
correspond to prime numbers, the ideal generated by n (a positive integer) is a prime
ideal if and only if n is a prime. Further, in (Z,+, ·) prime ideals are maximal ideals.
Moreover, prime ideals of (Z,+, ·) are generated by prime p. So, according to definition
3.4 one notes that the Jacobson radical of Z is given by

J(Z) = ∩{(p) : p, a prime} (3.1)

Since no number is divisible by every prime, one concludes that J(Z) = (0). Thus, Z
is a semi-simple ring[1g].

Theorem 3.5. [1h] Let R be a principal ideal domain. Then, R is semi-simple if, and
only if, R is either a field or has an infinite number of maximal ideals.

Demonstração. As R is a PID, R has a set of prime elements. Let {pi} be the set of
primes of R. This is generated by the fact that as R is a PID, a nontrivial ideal (p),
generated by a prime p is such that (p) is a maximal ideal (and so a prime ideal) if,
and only if, p is an irreducible (prime) element of R [1j]. So, the maximal ideals of
R are,simply, the principal ideals (p). So, an element a (belonging to R) becomes an
element of J(R) [1i], the Jacobson radical of R if, and only if, a is divisible by each
prime pi. So, a ∈ J(R) if and only if, a is divisible by each prime pi. If R has an infinite
number of maximal ideals, then a = 0, since every non-zero non invertible element of R
is uniquely representable as a finite product of primes. So, R is a PID ⇒ the Jacobson
radical of R is (0) or R is semi simple.

In the opposite direction, suppose that R has only a finite number of primes
p1, p2, . . . , pn, then

J(R) = ∩n
i=1pi = (p1, p2, . . . , pn) ̸= (0)

a contradiction to the hypothesis that J(R) = 0.

Finally, one notes that if the set {pi} is empty, then each nonzero element of R is
invertible and so, then, R is a field in which case radR = {0}.

Corollary 3.6 (An Important Corollary). The ring of integers Z has an infinite num-
bers of maximal ideals which are generated by primes, thus, giving an algebraic proof of
Euclid’s theorem.
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4 Euclidean Rings [2]
Definition 4.1. An integral domain D is said to be a Euclidean ring if, for every a ̸= 0
in D there is defined a non negative integer d(a) such that

(i) for all a, b,∈ D both nonzero d(a) ≤ d(ab),

(ii) for all a, b,∈ D both nonzero there exist s, t ∈ D such that a = sb+ t where either
t = 0 or d(t) < d(s).

Note: d(0) is not defined.
The set Z of integers serves as an example. The condition (ii) resembles the division

algorithm in the integral domain Z which says:
If a, b ∈ Z with b ̸= 0 there exist integers q and r such that a = bq + r where either

r = 0 or 0 < r < |b|.
The concept of a Euclidean ring is a generalization of the integral domain Z of

integers.

Theorem 4.2. Given an Euclidean ring D, suppose that A is an ideal of D. Then,
there exists an element a0 ∈ A such that A consists of elements a0d where d ∈ D.

If A is the zero ideal, one has to take a0 = 0D and the conclusion of the theorem
holds trivially.

When A ̸= (0), there exists a0 ̸= 0 and a0 ∈ A. Pick a0 such that d(a0) is minimal.
This is possible since d takes on non-negative integer values.

Suppose that a ∈ A. As D is a Euclidean domain, there exist t, r ∈ D such that
a = ta0 + r where r = 0 or d(r) < d(a0). Since a0 ∈ A and A is an ideal of D, ta0 ∈ A.
But, r = a − ta0. This implies that r ∈ A and r is such that d(r) < d(a0). This
contradicts the minimality of d(a0). So, r = 0. Thus, a = ta0 So, every element of A
is a multiple of a0, proving that A is a principal ideal of D, or D is a principal ideal
domain.

Notation. Let D be a principal ideal domain. If a ∈ D, principal ideal of D, generated
by a ∈ D is denoted by (a). That is, (a) = {xa : x ∈ D}.

Remark 2. The conclusion of theorem 4.2 is that every ideal of a Euclidean domain is
principal. In other words, a Euclidean domain is a principal ideal domain, abbreviated
as PID. However, there exist principal ideal domains that are not Euclidean domains.
See T. Motzkin [3]

Remark 3. A Euclidean domain D possess a unit element.
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The reason is that as D is a PID and so D, itself is a principal ideal of D. One
writes D = (n0) for aome n0 ∈ D. So every element of D is a multiple of n0 ∈ D.
Therefore, n0 = n0e for some e ∈ D. If a ∈ D, then a = bn0 for some b ∈ D. Then,

ae = (bn0)e = b(n0a) = bn0 = a.

As the Euclidean domain is commutative, e serves as the required unit element.

4.1 Divisibility Properties

Definition 4.3. Let R be a commutative ring with unity 1R. Suppose a ̸= 0 and b
are elements of R. One says that a divides b which is, symbolically, expressed as a | b.
When a does not divide b one writes a ∤ b. It follows that

1. If a | b and b | c, then a | c.

2. if a | b and a | c, then a | (b± c).

3. If a | b, then a | bc for all c ∈ R.

Definition 4.4. Let R be a commutative ring with unity. Given a, b ∈ R, an element
d in R is called the greatest common divisor (g.c.d) of a and b, if

1. d | a and d | b

2. whenever c(∈ R) is such that c | a and c | b, then c | d.

Remark 4. The notation d = (a, b) is used to denote the g.c.d of a and b.

Theorem 4.5. Given a Euclidean ring D, any two elements a, b of D have a greatest
common divisor g. Moreover, g = xa+ yb for some x, y ∈ D.

Demonstração. Let A be the set of elements of the form ka + lb where k, l vary over
the elements of D.

Claim. A is an ideal of D

Since A is the set of elements of the form ka + lb, suppose that sa + tb ∈ A, for
some s, t ∈ D.

m = k1a+ l1b, n = k2a+ l2b.

Then, m± n = (k1 ± k2)a+ (l1 ± l2)b ∈ A. Similarly, for any r ∈ D,

rm = r(k1a+ l1b)

= (r(k1)a+ (rl1)b ∈ A.
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Since A is an ideal of D, by theorem 4.2 there exists an element a0 ∈ A such that every
element in A is a multiple of a0. Since a0 ∈ A and every element of A is of the form
sa+ tb,

a0 = s1a+ t1b for some s1t1 ∈ D

By remark (3) D has a unit element say 1D. Then,

a = 1Da+ 0Db ∈ A; b = 0Da+ 1Db ∈ A. (**)

As a and b are elements of A by (**), one has a0 | a, a0 | b.
Lastly, suppose that c ∈ D is such that c | a and c | b then c | s1a + t1b = a0.

Therefore, a0 satisfies the conditions for a being the g.c.d of a and b. In other words, any
two elements a, b in D have a greatest common divisor g which is a linear combination
of a and b.

Definition 4.6. Let D be an integral domain with unit element 1D. An element a ∈ D
is a unit in D if there exists an element b ∈ D such that ab = 1D.

Theorem 4.7. Suppose that a, b ∈ D are such that a | b and b | a hold. Then, a = ub
where u is a unit in R.

Demonstração. Since a | b, one could writeb = sa for some s ∈ D. Since b | a, a = tb
for some t ∈ D. Then, b = sa = s(tb) = (st)b. As a, b belong to an integral domain,
canceling b from b = (st)b one gets st = 1D. Or, s is a unit in D and t is a unit in D
and so a = ub where u is a unit.

Definition 4.8. Let D be an integral domain with unit element. Two elements a, b ⊂ D
are said to be associates if b = na for some unit n in D.

It is verified that in a Euclidean ring D with unity 1D two greatest common divisors
of two given elements of D are associates.

Theorem 4.9. Let D be a Euclidean ring having elements a, b (say). If b is not a unit
in D, then d(a) < d(ab).

Demonstração. Consider the ideal A = (a) = {xa : x ∈ D} of D. By the property of a
Euclidean ring, d(a) ≤ d(xa) for 0 ̸= X ∈ D. That is, the d-value of a is the minimum
among d-values of elements of A. Suppose that ab ∈ A. If d(ab) = d(a), it could be
deduced that the d-value of ab is, also, minimal and every element in A is a multiple of
ab. It follows that a = abs for some s ∈ D. As D is an integral domain, cancellation
law allows one to conclude that bs = 1D. that is to say b is a unit in D, contrary to the
assumption that b is not a unit. The conclusion is that d(a) < d(ab).
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Definition 4.10. In a Euclidean ring D, a non-unit π s called a prime element of D
whenever π = ab, where a, b ∈ D, either a or b is a unit.

Theorem 4.11. Let D be a Euclidean ring. Then, every element of D is either a unit
in D or can be written as a product of prime elements of D.

Demonstração. Given a ∈ D, proof is by induction d(a). If d(a) = d(1D), then a is a
unit in D and so the first part of the theorem holds.

It is assumed that the theorem is true for all elements x in D such that d(x) < d(a).
The approach is to show that the theorem is true for a, also, by mathematical induction.

If a is a prime in D, the conclusion of the theorem is obvious. Suppose that a s not
a prime in D. Then, a could be displayed as a = bc where neither b nor c is a unit in
D. By theorem 4.9,

d(b) < d(bc) = d(a)

and d(c) < d(bc) = d(a).

By introduction hypothesis, b and c could be written as products of a finite number of
prime elements of D. That is,

b = π1 · π2 · . . . , πn, c = π′
1 · π′

2 . . . π
′
m

where πi, π
′
j(i = 1, 2, . . . , n ; j = 1, 2, . . . ,m) are prime elements of D. So, then, a =

bc = π1 · π2 · . . . πn · π′
1 · π′

2 · . . . π′
m. or , a is capable of factorization into prime elements

of D. This concludes the proof.

Example 4.12. The ring Z of integers, being a Euclidean domain, is a unique fatori-
zation domain.

General Notions Occurring in Number Theory

N1 The number of primes is infinite.

N2 Let p be a prime and a, b given integers. If p | ab, then either p | a or p | b.

N3 Any two integers have a g.c.d

N4 Given an integer n. n has the prime factorization

n = pa11 pa22 . . . pakk (ai ≥ 0, i = 1, 2, . . . , k)

and p1, p2, . . . , pk are distinct primes.
That is, unique factorization theorem holds for the set of integers

N5 Given an integer n, one could find out the least prime p dividing n
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General Notions Occurring in Algebra

A1 Let R be a principal ideal domain. Then R is semi-simple if, and only if, R is either
a field or has an infinite number of maximal ideals.

A2 Let D be a Euclidean ring. Suppose that π is a prime element in D. If π | ab where
a, b ∈ D, then π divides either a or b.

A3 Let D be a Euclidean ring. Any two elements a, b ∈ D have a greatest common
divisor.

A4 let D be a Euclidean ring. An element a of D has a unique factorization primes
π1, π2, . . . , πn.

That is, a = πa1
1 πa2

2 · · · πan
n .

A5

Definition 4.13. Let R be a commutative ring with unity 1R. Suppose that I
denotes an ideal of R. The nil radical of I written

√
I is the set

√
I = {r ∈ R : rn ∈ I for some integer n ∈ Z(n varies with r)}

In the ring Z of integers, when n ∈ Z is such that

n = pa11 pa22 . . . pakk

the nil radical of the principal ideal (n) is such that√
(n) = (p1p2 . . . pk) the ideal generated by the product p1p2 . . . pk.

For, Let a = max{a1, a2, . . . , ak}. Write the integer t = p1p2 . . . pk. Then, ta ∈ the
ideal generated by n. So, then, (p1, p2, pk) ⊆

√
(n), the radical of the ideal generated

by n. For some integer m, if m ∈
√

(n), then m is divisible by each of the primes
p1, p2, . . . , pk. That is, m is an element of the ideal (p1) ∩ (p2) ∩ . . . ∩ (pk) =
(p1p2 . . . pk). Thus, the nil radical of (n) is the ideal generated by p1p2 . . . pk [1j]
One could choose a least prime among the primes.
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