

Revista Sergipana de Matemática e Educação Matemática

https://doi.org/10.34179/revisem.v9i3.21800

Special Issue in honor of the 73rd birthday of Professor José Plínio de Oliveira Santos (IMECC-UNICAMP)

ALGEBRAIC ANALOGUES OF CERTAIN THEOREMS OCCURRING IN ELEMENTARY NUMBER THEORY (WARNING: ELEMENTARY NUMBER THEORY IS NOT THAT ELEMENTARY)

Sivaramakrishnan R. "Rajashree", 36/1328, Thekkemadhom Cross Road, Trichur 680001, Kerala, India rsjreeg@gmail.com

Abstract

This note makes an attempt to point out some of the familiar situations occurring in early number theory lessons.

Keywords: Commutative rings, semi simple-rings, Euclidean rings.

1 Introduction

- (i) The set of natural numbers contains $1, 2, 3, 4, \ldots$; the positive integers used for counting. This set is denoted by \mathbb{Z}^+ .
- (ii) A natural number ≥ 1 is either a prime or a product of prime numbers. An element $m \in \mathbb{Z}^+$ is uniquely expressible as

$$
m = p_1^{a_1} \cdots p_2^{a_2} \cdots p_n^{a_n} \tag{1.1}
$$

where p_1, p_2, \ldots, p_n are distinct primes.

- (iii) By a prime p, one means that given $a, b \in \mathbb{Z}^+$, p divides ab implies that either p | a or $p \mid b$ or $p \mid b$, where $|$ means 'divides'. (1.1) is refereed to as the prime-power decomposition of $m > 1$.
- (iv) In (1.1) , the prime-power decomposition of m contains a prime factor p which is least among the primes dividing n. That is, every integer n has a least prime divisor.
- (v) The set \mathbb{Z}^+ of positive integers forms a semi-group under multiplication.
- (vi) By adding 0 and negative integers to \mathbb{Z}^+ , one gets the set $\mathbb Z$ of all integers (positive, negative and zero). It is verified that $(\mathbb{Z}, +, \cdot)$ forms a commutative ring with identity (or unity) element 1. That is, $1 \cdot a = a \cdot 1 = a$, for $a \in \mathbb{Z}$.
- (vii) The formal definition of a ring R is the following: A ring R is an ordered triple $(R, +, \cdot)$ consisting of a nonempty set R and two binary operations $+$ and \cdot defined on R such that
	- (a) $(R, +)$ is an abelian group.
	- (b) (R, \cdot) is a semi-group and
	- (c) the operation $\left(\cdot\right)$ is distributive (on both sides) over the operation $(+)$.

(viii)

Definition 1.1. A commutative ring R is a ring $(R, +, \cdot)$ in which multiplication is commutative: that is, for all $a, b \in R$ $a \cdot b = b \cdot a$. It also means that the elements a, b are commutative.

- (ix) Given a ring $(R, +, \cdot)$, $0 \neq a \in R$ is called a left (right) zero divisor if there exists $b(\neq 0) \in R$ such that $a \cdot b = 0$ $(b \cdot a = 0)$. Further, a zero divisor of $(R, +, \cdot)$ is either a left or right zero divisor.
- (x) A ring R is without zero divisors if, and only if, R satisfies the cancellation laws for multiplication. That is, for all $a, b \in R$, $a \cdot b = a \cdot c$ and $b \cdot a = c \cdot a$ (where $a \neq 0$) imply that $b = c$.

 (xi)

Definition 1.2. A commutative ring is an integral domain if, and only if, it has no zero divisors.

 (xii)

Definition 1.3. Let I be a non empty subset of a ring R , I is called a two-sided ideal of k if, and only if,

- (i) for $a, b \in I$, one has $a b \in I$ and
- (ii) for $r \in R$ and $a \in I$, the conclusion: $ar \in I$, $ra \in I$ holds.
- (xiii) Let $(R, +, \cdot)$ be a commutative ring with unity. 1_R . $(R, +, \cdot)$ is called 'simple' if it has no non-trial ideals.

(xiv) Let $(R, +, \cdot)$ be a commutative ring with unity. $(R, +, \cdot)$ is called a principal ideal ring if every ideal of $(R, +, \cdot)$ is a principal ideal, that is, an ideal generated by a single element. A principal ideal ring which is an integral domain is termed a principal ideal domain (P.I.D).

 (xv)

Definition 1.4. Let R be a commutative ring with unity 1_R . An ideal I of the ring R is said to be a maximal ideal provided that $I \neq R$ and whenever J is an ideal of R with $I \subset J \subseteq R$, then $J = R$.

That is, the only ideal to contain a maximal ideal properly is the ring itself.

(xvi)

Notation. (I, a) denotes the ideal (of R) generated by the set $I \cup \{a\}$.

Theorem 1.5. [\[1\]](#page-12-0) R denotes a commutative ring with unity 1_R . An ideal I of R is a maximal ideal if, and only if, $(I, a) = R$ for any $a \notin I$.

Demonstração. The first observation is that (I, a) satisfies

$$
I \subset (I, a) \subseteq R
$$

If I where a maximal ideal of R, it would mean that $(I, a) = R$.

Conversely, suppose that J is an ideal of R, with the property that $I \subset J \subseteq R$. If $a \in J$ and $a \neq I$, one would get $I \subset (I, a) \subseteq J$. The requirement that $(I, a) = R$ would force $J = R$. Then, it follows that I is a maximal ideal.

 \Box

Next, let R be a commutative ring with unity 1_R .

Theorem 1.6. [\[1a\]](#page-12-1) Let $\{I_i\}$ be a collection of ideals of R. Then $\cap I_i$ is an ideal of R.

Demonstração. The intersection $\cap I_i$ is non-empty, since each I_i contains the zero element of the ring. Let $a, b \in \bigcap I_i$ and $r \in R$. As each I_i is an ideal, $a - b, ra, ar$ all lie in I_i . This is true for every value of I_i . So, $a - b$, ra , ar all belong to $\cap I_i$ making $\cap I_i$ an ideal of R. \Box

Given a commutative ring R with unity 1_R , let S be a nonempty subset of R. The symbol (S) is used to denote

$$
(S) = \cap \{I : S \subseteq I : I \text{ an ideal of } R\}
$$

The collection of all ideals which contain S is nonempty, since R itself is an ideal of R . By virtue of theorem [1.6,](#page-2-0) (S) forms an ideal and $(S) \subset I$. Further, (S) is the smallest ideal of R containing S.

If S consists of a finite number of elements say a_1, a_2, \ldots, a_n the ideal is said to be finitely generated with $a_i(i = 1, \ldots n)$ as its generators. An ideal (a) generated by $a \in R$ is called a principal ideal. The ring Z of integers is finitely generated and is generated by 1.

Theorem 1.7. [\[1b\]](#page-12-2) Let R be a commutative ring with unity 1_R . If R is finitely generated, each proper ideal of R is contained in a maximal ideal.

Demonstração. Suppose that R is finitely generated by the elements $a_1, a_2, \ldots a_n$. One defines

 $A = \{J : I \subseteq J$, where J is a proper ideal of R

A is nonempty, as I belongs to A

A chain $\{I_i\}$ of ideals in A is introduced.

Claim. $\cup I_i$ is again a member of A

The method of proof is as follows :

Let $a, b \in \bigcup I_i$ and $r \in R$. Then there exists indices I and J for which $a \in I_i$, $b \in I_j$. As the collection $\{I_i\}$ forms a chain of ideals either $I_i \subseteq I_j$ or $I_j \subseteq I_i$. For definiteness, suppose that $I_i \subseteq I_j$. Let $a, b \in I_j$. Then, $a - b \in I_j \subseteq \bigcup I_i$. Also, the products ar and $ra \in I_i \subseteq \cup I_i$. It follows that $\cup I_i$ is an ideal of R.

Claim. $\cup I_i$ is a proper ideal of R.

Suppose the contrary. Then, $\bigcup_i = R = (a_1, a_2, \ldots, a_n)$, the ideal generated by a_1, \ldots, a_n , since R is a finitely generated ring. Then, each generator a_k would belong to I_{i_k} of the chain $\{I_i\}$. As there are only finitely many I_{i_k} , one contains all others. Let It be marked $I_{i'}$. It follows that $I_{j'} = R$, which is impossible. Further, $I \subseteq \bigcup_{i} I_i$. The conclusion is that

 $\cup I_i \in A$.

Appealing to Zorn's Lemma $[1c]$, the family A contains a maximal element M. It follows from the definition of A that M is a proper ideal of R with $I \subseteq M$.

Claim. M is a maximal ideal of R.

Let J be an ideal for which $M \subset J \subseteq R$. Since M is a maximal element of the family A, J cannot belong to A. Then, J is an improper ideal and so $J = R$. The conclusion is that M is a maximal ideal of R and this statement completes the proof. □ **Theorem 1.8** (Krull-Zorn Theorem). [\[1d\]](#page-12-4) In a ring R with unity 1_R , each proper ideal is contained in a maximal ideal.

Remark 1. In the ring \mathbb{Z} of integers, every ideal is contained in a maximal ideal. But the maximal ideals of $\mathbb Z$ are the ideals generated by primes. In other words, given an integer $n(> 1) \in \mathbb{Z}$, there exists a smallest prime p which divides n.

2 Simple rings

A ring which is not commutative is considered. Let R denote the field of real numbers. $M_n(\mathbb{R})$ denotes the set of $n \times n$ matrices with entries from $I_{\mathbb{R}}$ $(n > 1)$. As a notational device, one writes E_{ij} to denote an $n \times n$ matrix whose (i, j) th entry is 1 where $j = i$ and zeros elsewhere. It is verified that $M_n(\mathbb{R})$ is a non-commutative ring with identity element $[\delta_{ij}]$ where

$$
\delta_{ij} = \begin{cases} 1; & j = i; \\ 0; & \text{otherwise.} \end{cases}
$$
 (2.1)

Suppose that $I \neq [0]$ is an ideal of $M_n(\mathbb{R})$. Then I will contain some nonzero matrix $[a_{ij}]$ (say) with an rs th entry $a_{rs} \neq 0$. Since I is a two-sided ideal of $M_n(\mathbb{R})$, the product

$$
E_{rr}[b_{ij}][a_{ij}]E_{ss}
$$

belongs to I where the matrix $[b_{ij}]$ is chosen to have the element a_{rs}^{-1} down its main diagonal and zeros elsewhere. As a result of all the zero entries in the various factors , it is easy to check that this product is equal to E_{rs} . Knowing this, the relation

$$
E_{ij} = E_{ir} E_{rs} E_{sj} (i, j = 1, 2, \ldots)
$$

implies that all the n^2 of the matrices E_{ij} are contained in I. Grasping firmly the situation, one notes that the identity matrix $[\delta_{ij}]$ where

$$
\delta_{ij} = \begin{cases} 1; & j = i; \\ 0; & \text{otherwise.} \end{cases}
$$

could be written as

$$
[\delta_{ij}] = E_{11} + E_{12} + \dots + E_{nn}
$$
\n^(*)

[\(*\)](#page-4-0) leads to the conclusion that $[\delta_{ij}] \in I$.

Observing that in a ring with identity, no proper (right , left or two-sided) ideal I contains the identity element,

$$
I = M_n(\mathbb{R}).
$$

In other words, $M_n(\mathbb{R})$ possesses no nonzero proper ideals and thus $M_n(\mathbb{R})$ is a simple ring [\[1e\]](#page-12-5).

3 Semi-simple Rings

A property of the set of positive integers is a fact that the set $\mathbb N$ of positive integers has an infinite number of primes. The necessary ground-work has to be provided. Let R be a commutative ring with unity.

Definition 3.1. An ideal I of the ring R is said to be a maximal ideal if $I \neq R$ and J is an ideal of R with $I \subset J \subseteq R$, then $J = R$.

Theorem 3.2. In the ring \mathbb{Z} of integers, maximal ideals correspond to those generated by primes.

Demonstração. It is noted that $\mathbb Z$ is a principal ideal domain (PID). That is to say that every ideal of Z is generated by an integer $n(n \geq 0)$. As Z has no divisors of zero, Z is an integral domain in which every ideal is principal. $\mathbb Z$ is an example of a principal ideal domain (PID). \Box

It is known $[1f]$ that if R is a finitely generated ring, then each ideal or R is contained in a maximal ideal.

Definition 3.3. An ideal I of R (a commutative ring with unity) is called a prime ideal if for all $a, b \in R$, $ab \in I$ implies that either $a \in I$ or $b \in I$.

This is the analogue of the result stated below.

In the set N of positive integers, if p is a prime dividing ab (where a, b are positive integers), p divides ab implies either p divides a or p divides b .

It is noted that in a commutative ring with identity, every maximal ideal is a prime ideal.

Definition 3.4. The Jacobson radical of a commutative ring R with unity denoted by $J(R)$ is the set

 $J(R) = \bigcap \{M \mid M \text{ is a maximal ideal of } R\}$

If $J(R) = \{0\}$, R is said to be a ring without Jacobson radical or R is a semi simple ring.

To show that the ring $\mathbb Z$ of integers is semi-simple the first observation is that the maximal ideals of Z correspond to prime numbers.

It is noted that $(\mathbb{Z}, +, \cdot)$ is an integral domain in which every ideal is principal. That is, $(\mathbb{Z}, +, \cdot)$ is a principal ideal domain (PID). Further, in $(\mathbb{Z}, +, \cdot)$ maximal ideals correspond to prime numbers, the ideal generated by n (a positive integer) is a prime ideal if and only if n is a prime. Further, in $(\mathbb{Z}, +, \cdot)$ prime ideals are maximal ideals. Moreover, prime ideals of $(\mathbb{Z}, +, \cdot)$ are generated by prime p. So, according to definition [3.4](#page-5-0) one notes that the Jacobson radical of $\mathbb Z$ is given by

$$
J(\mathbb{Z}) = \cap \{(p) : p, \text{ a prime}\}\tag{3.1}
$$

Since no number is divisible by every prime, one concludes that $J(\mathbb{Z}) = (0)$. Thus, \mathbb{Z} is a semi-simple ring $1g$.

Theorem 3.5. [\[1h\]](#page-12-8) Let R be a principal ideal domain. Then, R is semi-simple if, and only if, R is either a field or has an infinite number of maximal ideals.

Demonstração. As R is a PID, R has a set of prime elements. Let $\{p_i\}$ be the set of primes of R. This is generated by the fact that as R is a PID, a nontrivial ideal (p) , generated by a prime p is such that (p) is a maximal ideal (and so a prime ideal) if, and only if, p is an irreducible (prime) element of R [\[1j\]](#page-12-9). So, the maximal ideals of R are, simply, the principal ideals (p) . So, an element a (belonging to R) becomes an element of $J(R)$ [\[1i\]](#page-12-10), the Jacobson radical of R if, and only if, a is divisible by each prime p_i . So, $a \in J(R)$ if and only if, a is divisible by each prime p_i . If R has an infinite number of maximal ideals, then $a = 0$, since every non-zero non invertible element of R is uniquely representable as a finite product of primes. So, R is a PID \Rightarrow the Jacobson radical of R is (0) or R is semi simple.

In the opposite direction, suppose that R has only a finite number of primes p_1, p_2, \ldots, p_n , then

$$
J(R) = \bigcap_{i=1}^{n} pi = (p_1, p_2, \dots, p_n) \neq (0)
$$

a contradiction to the hypothesis that $J(R) = 0$.

Finally, one notes that if the set $\{p_i\}$ is empty, then each nonzero element of R is invertible and so, then, R is a field in which case $rad R = \{0\}.$

Corollary 3.6 (An Important Corollary). The ring of integers \mathbb{Z} has an infinite numbers of maximal ideals which are generated by primes, thus, giving an algebraic proof of Euclid's theorem.

 \Box

4 Euclidean Rings [\[2\]](#page-12-11)

Definition 4.1. An integral domain D is said to be a Euclidean ring if, for every $a \neq 0$ in D there is defined a non negative integer $d(a)$ such that

- (i) for all $a, b \in D$ both nonzero $d(a) \leq d(ab)$,
- (ii) for all $a, b \in D$ both nonzero there exist $s, t \in D$ such that $a = sb + t$ where either $t = 0$ or $d(t) < d(s)$.

Note: $d(0)$ is not defined.

The set $\mathbb Z$ of integers serves as an example. The condition (ii) resembles the division algorithm in the integral domain $\mathbb Z$ which says:

If $a, b \in \mathbb{Z}$ with $b \neq 0$ there exist integers q and r such that $a = bq + r$ where either $r = 0$ or $0 < r < |b|$.

The concept of a Euclidean ring is a generalization of the integral domain $\mathbb Z$ of integers.

Theorem 4.2. Given an Euclidean ring D, suppose that A is an ideal of D. Then, there exists an element $a_0 \in A$ such that A consists of elements a_0d where $d \in D$.

If A is the zero ideal, one has to take $a_0 = 0_D$ and the conclusion of the theorem holds trivially.

When $A \neq (0)$, there exists $a_0 \neq 0$ and $a_0 \in A$. Pick a_0 such that $d(a_0)$ is minimal. This is possible since d takes on non-negative integer values.

Suppose that $a \in A$. As D is a Euclidean domain, there exist $t, r \in D$ such that $a = ta_0 + r$ where $r = 0$ or $d(r) < d(a_0)$. Since $a_0 \in A$ and A is an ideal of D, $ta_0 \in A$. But, $r = a - ta_0$. This implies that $r \in A$ and r is such that $d(r) < d(a_0)$. This contradicts the minimality of $d(a_0)$. So, $r = 0$. Thus, $a = ta_0$ So, every element of A is a multiple of a_0 , proving that A is a principal ideal of D, or D is a principal ideal domain.

Notation. Let D be a principal ideal domain. If $a \in D$, principal ideal of D, generated by $a \in D$ is denoted by (a). That is, $(a) = \{xa : x \in D\}.$

Remark 2. The conclusion of theorem [4.2](#page-7-0) is that every ideal of a Euclidean domain is principal. In other words, a Euclidean domain is a principal ideal domain, abbreviated as PID. However, there exist principal ideal domains that are not Euclidean domains. See T. Motzkin [\[3\]](#page-12-12)

Remark 3. A Euclidean domain D possess a unit element.

The reason is that as D is a PID and so D , itself is a principal ideal of D . One writes $D = (n_0)$ for aome $n_0 \in D$. So every element of D is a multiple of $n_0 \in D$. Therefore, $n_0 = n_0e$ for some $e \in D$. If $a \in D$, then $a = bn_0$ for some $b \in D$. Then,

$$
ae = (bn_0)e = b(n_0a) = bn_0 = a.
$$

As the Euclidean domain is commutative, e serves as the required unit element.

4.1 Divisibility Properties

Definition 4.3. Let R be a commutative ring with unity 1_R . Suppose $a \neq 0$ and b are elements of R. One says that a divides b which is, symbolically, expressed as a | b. When a does not divide b one writes $a \nmid b$. It follows that

- 1. If a | b and b | c, then a | c.
- 2. if a | b and a | c, then a | $(b \pm c)$.
- 3. If a | b, then a | bc for all $c \in R$.

Definition 4.4. Let R be a commutative ring with unity. Given $a, b \in R$, an element d in R is called the greatest common divisor $(q.c.d)$ of a and b, if

- 1. $d \mid a \text{ and } d \mid b$
- 2. whenever $c(\in R)$ is such that c | a and c | b, then c | d.

Remark 4. The notation $d = (a, b)$ is used to denote the g.c.d of a and b.

Theorem 4.5. Given a Euclidean ring D, any two elements a, b of D have a greatest common divisor g. Moreover, $g = xa + yb$ for some $x, y \in D$.

Demonstração. Let A be the set of elements of the form $ka + lb$ where k, l vary over the elements of D.

Claim. A is an ideal of D

Since A is the set of elements of the form $ka + lb$, suppose that $sa + tb \in A$, for some $s, t \in D$.

$$
m = k_1 a + l_1 b
$$
, $n = k_2 a + l_2 b$.

Then, $m \pm n = (k_1 \pm k_2)a + (l_1 \pm l_2)b \in A$. Similarly, for any $r \in D$,

$$
rm = r(k1a + l1b)
$$

= (r(k₁)a + (rl₁)b \in A.

Since A is an ideal of D, by theorem [4.2](#page-7-0) there exists an element $a_0 \in A$ such that every element in A is a multiple of a_0 . Since $a_0 \in A$ and every element of A is of the form $sa + tb$,

$$
a_0 = s_1 a + t_1 b
$$
 for some $s_1 t_1 \in D$

By remark (3) D has a unit element say 1_D . Then,

$$
a = 1_D a + 0_D b \in A; \quad b = 0_D a + 1_D b \in A.
$$

$$
(*)
$$

As a and b are elements of A by $(**)$, one has $a_0 | a, a_0 | b$.

Lastly, suppose that $c \in D$ is such that $c \mid a$ and $c \mid b$ then $c \mid s_1a + t_1b = a_0$. Therefore, a_0 satisfies the conditions for a being the g.c.d of a and b. In other words, any two elements a, b in D have a greatest common divisor g which is a linear combination of a and b. □

Definition 4.6. Let D be an integral domain with unit element 1_D . An element $a \in D$ is a unit in D if there exists an element $b \in D$ such that $ab = 1_D$.

Theorem 4.7. Suppose that $a, b \in D$ are such that $a \mid b$ and $b \mid a$ hold. Then, $a = ub$ where u is a unit in R.

Demonstração. Since $a \mid b$, one could write $b = sa$ for some $s \in D$. Since $b \mid a, a = tb$ for some $t \in D$. Then, $b = sa = s(tb) = (st)b$. As a, b belong to an integral domain, canceling b from $b = (st)b$ one gets $st = 1_D$. Or, s is a unit in D and t is a unit in D and so $a = ub$ where u is a unit. \Box

Definition 4.8. Let D be an integral domain with unit element. Two elements $a, b \subset D$ are said to be associates if $b = na$ for some unit n in D.

It is verified that in a Euclidean ring D with unity 1_D two greatest common divisors of two given elements of D are associates.

Theorem 4.9. Let D be a Euclidean ring having elements a, b (say). If b is not a unit in D, then $d(a) < d(ab)$.

Demonstração. Consider the ideal $A = (a) = \{xa : x \in D\}$ of D. By the property of a Euclidean ring, $d(a) \leq d(xa)$ for $0 \neq X \in D$. That is, the *d*-value of *a* is the minimum among d-values of elements of A. Suppose that $ab \in A$. If $d(ab) = d(a)$, it could be deduced that the d-value of ab is, also, minimal and every element in A is a multiple of ab. It follows that $a = abs$ for some $s \in D$. As D is an integral domain, cancellation law allows one to conclude that $bs = 1_D$. that is to say b is a unit in D, contrary to the assumption that b is not a unit. The conclusion is that $d(a) < d(ab)$. \Box

Definition 4.10. In a Euclidean ring D, a non-unit π s called a prime element of D whenever $\pi = ab$, where $a, b \in D$, either a or b is a unit.

Theorem 4.11. Let D be a Euclidean ring. Then, every element of D is either a unit in D or can be written as a product of prime elements of D.

Demonstração. Given $a \in D$, proof is by induction $d(a)$. If $d(a) = d(1_D)$, then a is a unit in D and so the first part of the theorem holds.

It is assumed that the theorem is true for all elements x in D such that $d(x) < d(a)$. The approach is to show that the theorem is true for a , also, by mathematical induction.

If a is a prime in D , the conclusion of the theorem is obvious. Suppose that a s not a prime in D. Then, a could be displayed as $a = bc$ where neither b nor c is a unit in D. By theorem [4.9,](#page-9-1)

$$
d(b) < d(bc) = d(a)
$$
\nand

\n
$$
d(c) < d(bc) = d(a).
$$

By introduction hypothesis, b and c could be written as products of a finite number of prime elements of D. That is,

$$
b = \pi_1 \cdot \pi_2 \cdot \ldots, \pi_n, \ c = \pi'_1 \cdot \pi'_2 \ldots \pi'_m
$$

where π_i, π'_j $(i = 1, 2, \ldots, n; j = 1, 2, \ldots, m)$ are prime elements of D. So, then, $a =$ $bc = \pi_1 \cdot \pi_2 \cdot \ldots \pi_n \cdot \pi'_1 \cdot \pi'_2 \cdot \ldots \pi'_m$ or, a is capable of factorization into prime elements of D. This concludes the proof. \Box

Example 4.12. The ring $\mathbb Z$ of integers, being a Euclidean domain, is a unique fatorization domain.

General Notions Occurring in Number Theory

- N1 The number of primes is infinite.
- N2 Let p be a prime and a, b given integers. If $p | ab$, then either $p | a$ or $p | b$.
- N3 Any two integers have a g.c.d
- N4 Given an integer n . n has the prime factorization

$$
n = p_1^{a_1} p_2^{a_2} \dots p_k^{a_k} \ (a_i \ge 0, i = 1, 2, \dots, k)
$$

and p_1, p_2, \ldots, p_k are distinct primes.

That is, unique factorization theorem holds for the set of integers

N5 Given an integer n, one could find out the least prime p dividing n

General Notions Occurring in Algebra

- A1 Let R be a principal ideal domain. Then R is semi-simple if, and only if, R is either a field or has an infinite number of maximal ideals.
- A2 Let D be a Euclidean ring. Suppose that π is a prime element in D. If $\pi | ab$ where $a, b \in D$, then π divides either a or b.
- A3 Let D be a Euclidean ring. Any two elements $a, b \in D$ have a greatest common divisor.
- A4 let D be a Euclidean ring. An element a of D has a unique factorization primes $\pi_1, \pi_2, \ldots, \pi_n$.

That is, $a = \pi_1^{a_1} \pi_2^{a_2} \cdots \pi_n^{a_n}$.

A5

Definition 4.13. Let R be a commutative ring with unity 1_R . Suppose that I **Definition 4.13.** Let R be a commutative ring with unity I_F denotes an ideal of R. The nil radical of I written \sqrt{I} is the set

> √ $\overline{I} = \{r \in R : r^n \in I \text{ for some integer } n \in \mathbb{Z}(n \text{ varies with } r)\}\$

In the ring $\mathbb Z$ of integers, when $n \in \mathbb Z$ is such that

$$
n = p_1^{a_1} p_2^{a_2} \dots p_k^{a_k}
$$

the nil radical of the principal ideal (n) is such that

 $\sqrt{(n)} = (p_1p_2 \ldots p_k)$ the ideal generated by the product $p_1p_2 \ldots p_k$.

For, Let $a = \max\{a_1, a_2, \ldots, a_k\}$. Write the integer $t = p_1p_2 \ldots p_k$. Then, $t^a \in the$ ideal generated by n. So, then, $(p_1, p_2, p_k) \subseteq \sqrt{(n)}$, the radical of the ideal generated by n. For some integer m, if $m \in \sqrt{(n)}$, then m is divisible by each of the primes p_1, p_2, \ldots, p_k . That is, m is an element of the ideal $(p_1) \cap (p_2) \cap \ldots \cap (p_k) =$ $(p_1p_2...p_k)$. Thus, the nil radical of (n) is the ideal generated by $p_1p_2...p_k$ [\[1j\]](#page-12-9) One could choose a least prime among the primes.

Referências

- [1f] . page 73. [1g] . page 158. [1h] . page 162. [1i] . page 99. [1j] . page 79.
- [2] I. N. Hersiten : Topics in Algera, Blaisdell Publishing company. Adiwision of Ginn and Company. New York Toronto London First Edition (1964) Third Printing (1965) pp 104–109
- [3] T.Motzkin, The Euclidean Algorithm, Bull.Amer.Math,Soc. Vol 55 (1949)pp 1142– 1146.

Accept in 12 September 2024.