

Revista Sergipana de Matemática e Educação Matemática

https://doi.org/10.34179/revisem.v9i3.21800

Special Issue in honor of the 73rd birthday of Professor José Plínio de Oliveira Santos (IMECC-UNICAMP)

ALGEBRAIC ANALOGUES OF CERTAIN THEOREMS OCCURRING IN ELEMENTARY NUMBER THEORY (WARNING: ELEMENTARY NUMBER THEORY IS NOT THAT ELEMENTARY)

Sivaramakrishnan R. "Rajashree", 36/1328, Thekkemadhom Cross Road, Trichur 680001, Kerala, India rsjreeg@gmail.com

Abstract

This note makes an attempt to point out some of the familiar situations occurring in early number theory lessons.

Keywords: Commutative rings, semi simple-rings, Euclidean rings.

1 Introduction

- (i) The set of natural numbers contains 1, 2, 3, 4, ...; the positive integers used for counting. This set is denoted by Z⁺.
- (ii) A natural number ≥ 1 is either a prime or a product of prime numbers. An element $m \in \mathbb{Z}^+$ is uniquely expressible as

$$m = p_1^{a_1} \cdots p_2^{a_2} \dots p_n^{a_n} \tag{1.1}$$

where $p_1, p_2, \ldots p_n$ are distinct primes.

- (iii) By a prime p, one means that given $a, b \in \mathbb{Z}^+$, p divides ab implies that either $p \mid a$ or $p \mid b$ or $p \mid b$, where \mid means 'divides'. (1.1) is referred to as the prime-power decomposition of m > 1.
- (iv) In (1.1), the prime-power decomposition of m contains a prime factor p which is least among the primes dividing n. That is, every integer n has a least prime divisor.
- (v) The set \mathbb{Z}^+ of positive integers forms a semi-group under multiplication.

- (vi) By adding 0 and negative integers to \mathbb{Z}^+ , one gets the set \mathbb{Z} of all integers (positive, negative and zero). It is verified that $(\mathbb{Z}, +, \cdot)$ forms a commutative ring with identity (or unity) element 1. That is, $1 \cdot a = a \cdot 1 = a$, for $a \in \mathbb{Z}$.
- (vii) The formal definition of a ring R is the following:

A ring R is an ordered triple $(R, +, \cdot)$ consisting of a nonempty set R and two binary operations + and \cdot defined on R such that

- (a) (R, +) is an abelian group.
- (b) (R, \cdot) is a semi-group and
- (c) the operation (\cdot) is distributive (on both sides) over the operation (+).

(viii)

Definition 1.1. A commutative ring R is a ring $(R, +, \cdot)$ in which multiplication is commutative: that is, for all $a, b \in R$ $a \cdot b = b \cdot a$. It also means that the elements a, b are commutative.

- (ix) Given a ring $(R, +, \cdot)$, $0 \neq a \in R$ is called a left (right) zero divisor if there exists $b(\neq 0) \in R$ such that $a \cdot b = 0$ ($b \cdot a = 0$). Further, a zero divisor of $(R, +, \cdot)$ is either a left or right zero divisor.
- (x) A ring R is without zero divisors if, and only if, R satisfies the cancellation laws for multiplication. That is, for all $a, b \in R$, $a \cdot b = a \cdot c$ and $b \cdot a = c \cdot a$ (where $a \neq 0$) imply that b = c.

(xi)

Definition 1.2. A commutative ring is an integral domain if, and only if, it has no zero divisors.

(xii)

Definition 1.3. Let I be a non empty subset of a ring R, I is called a two-sided ideal of k if, and only if,

- (i) for $a, b \in I$, one has $a b \in I$ and
- (ii) for $r \in R$ and $a \in I$, the conclusion: $ar \in I, ra \in I$ holds.
- (xiii) Let $(R, +, \cdot)$ be a commutative ring with unity. 1_R . $(R, +, \cdot)$ is called 'simple' if it has no non-trial ideals.

(xiv) Let $(R, +, \cdot)$ be a commutative ring with unity. $(R, +, \cdot)$ is called a principal ideal ring if every ideal of $(R, +, \cdot)$ is a principal ideal, that is, an ideal generated by a single element. A principal ideal ring which is an integral domain is termed a principal ideal domain (P.I.D).

(xv)

Definition 1.4. Let R be a commutative ring with unity 1_R . An ideal I of the ring R is said to be a maximal ideal provided that $I \neq R$ and whenever J is an ideal of R with $I \subset J \subseteq R$, then J = R.

That is, the only ideal to contain a maximal ideal properly is the ring itself.

(xvi)

Notation. (I, a) denotes the ideal (of R) generated by the set $I \cup \{a\}$.

Theorem 1.5. [1] R denotes a commutative ring with unity 1_R . An ideal I of R is a maximal ideal if, and only if, (I, a) = R for any $a \notin I$.

Demonstração. The first observation is that (I, a) satisfies

$$I \subset (I,a) \subseteq R$$

If I where a maximal ideal of R, it would mean that (I, a) = R.

Conversely, suppose that J is an ideal of R, with the property that $I \subset J \subseteq R$. If $a \in J$ and $a \neq I$, one would get $I \subset (I, a) \subseteq J$. The requirement that (I, a) = R would force J = R. Then, it follows that I is a maximal ideal.

Next, let R be a commutative ring with unity 1_R .

Theorem 1.6. [1a] Let $\{I_i\}$ be a collection of ideals of R. Then $\cap I_i$ is an ideal of R.

Demonstração. The intersection $\cap I_i$ is non-empty, since each I_i contains the zero element of the ring. Let $a, b \in \cap I_i$ and $r \in R$. As each I_i is an ideal, a - b, ra, ar all lie in I_i . This is true for every value of I_i . So, a - b, ra, ar all belong to $\cap I_i$ making $\cap I_i$ an ideal of R.

Given a commutative ring R with unity 1_R , let S be a nonempty subset of R. The symbol (S) is used to denote

$$(S) = \cap \{I : S \subseteq I : I \text{ an ideal of } R\}$$

The collection of all ideals which contain S is nonempty, since R itself is an ideal of R. By virtue of theorem 1.6, (S) forms an ideal and $(S) \subset I$. Further, (S) is the smallest ideal of R containing S.

If S consists of a finite number of elements say a_1, a_2, \ldots, a_n the ideal is said to be finitely generated with $a_i (i = 1, \ldots, n)$ as its generators. An ideal (a) generated by $a \in R$ is called a principal ideal. The ring \mathbb{Z} of integers is finitely generated and is generated by 1.

Theorem 1.7. [1b] Let R be a commutative ring with unity 1_R . If R is finitely generated, each proper ideal of R is contained in a maximal ideal.

Demonstração. Suppose that R is finitely generated by the elements $a_1, a_2, \ldots a_n$. One defines

 $A = \{J : I \subseteq J, \text{ where } J \text{ is a proper ideal of } R\}$

A is nonempty, as I belongs to A

A chain $\{I_i\}$ of ideals in A is introduced.

Claim. $\cup I_i$ is again a member of A

The method of proof is as follows :

Let $a, b \in \bigcup I_i$ and $r \in R$. Then there exists indices I and J for which $a \in I_i, b \in I_j$. As the collection $\{I_i\}$ forms a chain of ideals either $I_i \subseteq I_j$ or $I_j \subseteq I_i$. For definiteness, suppose that $I_i \subseteq I_j$. Let $a, b \in I_j$. Then, $a - b \in I_j \subseteq \bigcup I_i$. Also, the products ar and $ra \in I_i \subseteq \bigcup I_i$. It follows that $\bigcup I_i$ is an ideal of R.

Claim. $\cup I_i$ is a proper ideal of R.

Suppose the contrary. Then, $\cup I_i = R = (a_1, a_2, \ldots, a_n)$, the ideal generated by a_1, \ldots, a_n , since R is a finitely generated ring. Then, each generator a_k would belong to I_{i_k} of the chain $\{I_i\}$. As there are only finitely many I_{i_k} , one contains all others. Let It be marked $I_{i'}$. It follows that $I_{j'} = R$, which is impossible. Further, $I \subseteq \cup I_i$. The conclusion is that

 $\cup I_i \in A.$

Appealing to Zorn's Lemma [1c], the family A contains a maximal element M. It follows from the definition of A that M is a proper ideal of R with $I \subseteq M$.

Claim. M is a maximal ideal of R.

Let J be an ideal for which $M \subset J \subseteq R$. Since M is a maximal element of the family A, J cannot belong to A. Then, J is an improper ideal and so J = R. The conclusion is that M is a maximal ideal of R and this statement completes the proof. \Box

Theorem 1.8 (Krull-Zorn Theorem). [1d] In a ring R with unity 1_R , each proper ideal is contained in a maximal ideal.

Remark 1. In the ring \mathbb{Z} of integers, every ideal is contained in a maximal ideal. But the maximal ideals of \mathbb{Z} are the ideals generated by primes. In other words, given an integer $n(>1) \in \mathbb{Z}$, there exists a smallest prime p which divides n.

2 Simple rings

A ring which is not commutative is considered. Let \mathbb{R} denote the field of real numbers. $M_n(\mathbb{R})$ denotes the set of $n \times n$ matrices with entries from $I_{\mathbb{R}}$ (n > 1). As a notational device, one writes E_{ij} to denote an $n \times n$ matrix whose (i, j)th entry is 1 where j = iand zeros elsewhere. It is verified that $M_n(\mathbb{R})$ is a non-commutative ring with identity element $[\delta_{ij}]$ where

$$\delta_{ij} = \begin{cases} 1; & j = i; \\ 0; & \text{otherwise.} \end{cases}$$
(2.1)

Suppose that $I \neq [0]$ is an ideal of $M_n(\mathbb{R})$. Then I will contain some nonzero matrix $[a_{ij}]$ (say) with an rs th entry $a_{rs} \neq 0$. Since I is a two-sided ideal of $M_n(\mathbb{R})$, the product

$$E_{rr}[b_{ij}][a_{ij}]E_{ss}$$

belongs to I where the matrix $[b_{ij}]$ is chosen to have the element a_{rs}^{-1} down its main diagonal and zeros elsewhere. As a result of all the zero entries in the various factors, it is easy to check that this product is equal to E_{rs} . Knowing this, the relation

$$E_{ij} = E_{ir}E_{rs}E_{sj}(i,j=1,2,\ldots)$$

implies that all the n^2 of the matrices E_{ij} are contained in *I*. Grasping firmly the situation, one notes that the identity matrix $[\delta_{ij}]$ where

$$\delta_{ij} = \begin{cases} 1; & j = i; \\ 0; & \text{otherwise.} \end{cases}$$

could be written as

$$[\delta_{ij}] = E_{11} + E_{12} + \dots + E_{nn} \tag{*}$$

(*) leads to the conclusion that $[\delta_{ij}] \in I$.

Observing that in a ring with identity, no proper (right , left or two-sided) ideal I contains the identity element,

$$I = M_n(\mathbb{R}).$$

In other words, $M_n(\mathbb{R})$ possesses no nonzero proper ideals and thus $M_n(\mathbb{R})$ is a simple ring [1e].

3 Semi-simple Rings

A property of the set of positive integers is a fact that the set \mathbb{N} of positive integers has an infinite number of primes. The necessary ground-work has to be provided. Let R be a commutative ring with unity.

Definition 3.1. An ideal I of the ring R is said to be a maximal ideal if $I \neq R$ and J is an ideal of R with $I \subset J \subseteq R$, then J = R.

Theorem 3.2. In the ring \mathbb{Z} of integers, maximal ideals correspond to those generated by primes.

Demonstração. It is noted that \mathbb{Z} is a principal ideal domain (PID). That is to say that every ideal of \mathbb{Z} is generated by an integer $n(n \ge 0)$. As \mathbb{Z} has no divisors of zero, \mathbb{Z} is an integral domain in which every ideal is principal. \mathbb{Z} is an example of a principal ideal domain (PID).

It is known [1f] that if R is a finitely generated ring, then each ideal or R is contained in a maximal ideal.

Definition 3.3. An ideal I of R (a commutative ring with unity) is called a prime ideal if for all $a, b \in R$, $ab \in I$ implies that either $a \in I$ or $b \in I$.

This is the analogue of the result stated below.

In the set \mathbb{N} of positive integers, if p is a prime dividing ab (where a, b are positive integers), p divides ab implies either p divides a or p divides b.

It is noted that in a commutative ring with identity, every maximal ideal is a prime ideal.

Definition 3.4. The Jacobson radical of a commutative ring R with unity denoted by J(R) is the set

 $J(R) = \bigcap \{ M \mid M \text{ is a maximal ideal of } R \}$

If $J(R) = \{0\}, R$ is said to be a ring without Jacobson radical or R is a semi-simple ring.

To show that the ring \mathbb{Z} of integers is semi-simple the first observation is that the maximal ideals of \mathbb{Z} correspond to prime numbers.

It is noted that $(\mathbb{Z}, +, \cdot)$ is an integral domain in which every ideal is principal. That is, $(\mathbb{Z}, +, \cdot)$ is a principal ideal domain (PID). Further, in $(\mathbb{Z}, +, \cdot)$ maximal ideals correspond to prime numbers, the ideal generated by n (a positive integer) is a prime ideal if and only if n is a prime. Further, in $(\mathbb{Z}, +, \cdot)$ prime ideals are maximal ideals. Moreover, prime ideals of $(\mathbb{Z}, +, \cdot)$ are generated by prime p. So, according to definition 3.4 one notes that the Jacobson radical of \mathbb{Z} is given by

$$J(\mathbb{Z}) = \cap\{(p) : p, \text{ a prime}\}$$
(3.1)

Since no number is divisible by every prime, one concludes that $J(\mathbb{Z}) = (0)$. Thus, \mathbb{Z} is a semi-simple ring[1g].

Theorem 3.5. [1h] Let R be a principal ideal domain. Then, R is semi-simple if, and only if, R is either a field or has an infinite number of maximal ideals.

Demonstração. As R is a PID, R has a set of prime elements. Let $\{p_i\}$ be the set of primes of R. This is generated by the fact that as R is a PID, a nontrivial ideal (p), generated by a prime p is such that (p) is a maximal ideal (and so a prime ideal) if, and only if, p is an irreducible (prime) element of R [1j]. So, the maximal ideals of R are, simply, the principal ideals (p). So, an element a (belonging to R) becomes an element of J(R) [1i], the Jacobson radical of R if, and only if, a is divisible by each prime p_i . So, $a \in J(R)$ if and only if, a is divisible by each prime p_i . If R has an infinite number of maximal ideals, then a = 0, since every non-zero non invertible element of R is uniquely representable as a finite product of primes. So, R is a PID \Rightarrow the Jacobson radical of R is (0) or R is semi simple.

In the opposite direction, suppose that R has only a finite number of primes p_1, p_2, \ldots, p_n , then

$$J(R) = \bigcap_{i=1}^{n} p_i = (p_1, p_2, \dots, p_n) \neq (0)$$

a contradiction to the hypothesis that J(R) = 0.

Finally, one notes that if the set $\{p_i\}$ is empty, then each nonzero element of R is invertible and so, then, R is a field in which case $rad R = \{0\}$.

Corollary 3.6 (An Important Corollary). The ring of integers \mathbb{Z} has an infinite numbers of maximal ideals which are generated by primes, thus, giving an algebraic proof of Euclid's theorem.

4 Euclidean Rings [2]

Definition 4.1. An integral domain D is said to be a Euclidean ring if, for every $a \neq 0$ in D there is defined a non negative integer d(a) such that

- (i) for all $a, b, \in D$ both nonzero $d(a) \leq d(ab)$,
- (ii) for all $a, b, \in D$ both nonzero there exist $s, t \in D$ such that a = sb + t where either t = 0 or d(t) < d(s).

Note: d(0) is not defined.

The set \mathbb{Z} of integers serves as an example. The condition (ii) resembles the division algorithm in the integral domain \mathbb{Z} which says:

If $a, b \in \mathbb{Z}$ with $b \neq 0$ there exist integers q and r such that a = bq + r where either r = 0 or 0 < r < |b|.

The concept of a Euclidean ring is a generalization of the integral domain $\mathbb Z$ of integers.

Theorem 4.2. Given an Euclidean ring D, suppose that A is an ideal of D. Then, there exists an element $a_0 \in A$ such that A consists of elements a_0d where $d \in D$.

If A is the zero ideal, one has to take $a_0 = 0_D$ and the conclusion of the theorem holds trivially.

When $A \neq (0)$, there exists $a_0 \neq 0$ and $a_0 \in A$. Pick a_0 such that $d(a_0)$ is minimal. This is possible since d takes on non-negative integer values.

Suppose that $a \in A$. As D is a Euclidean domain, there exist $t, r \in D$ such that $a = ta_0 + r$ where r = 0 or $d(r) < d(a_0)$. Since $a_0 \in A$ and A is an ideal of D, $ta_0 \in A$. But, $r = a - ta_0$. This implies that $r \in A$ and r is such that $d(r) < d(a_0)$. This contradicts the minimality of $d(a_0)$. So, r = 0. Thus, $a = ta_0$ So, every element of A is a multiple of a_0 , proving that A is a principal ideal of D, or D is a principal ideal domain.

Notation. Let D be a principal ideal domain. If $a \in D$, principal ideal of D, generated by $a \in D$ is denoted by (a). That is, $(a) = \{xa : x \in D\}$.

Remark 2. The conclusion of theorem 4.2 is that every ideal of a Euclidean domain is principal. In other words, a Euclidean domain is a principal ideal domain, abbreviated as PID. However, there exist principal ideal domains that are not Euclidean domains. See T. Motzkin [3]

Remark 3. A Euclidean domain D possess a unit element.

The reason is that as D is a PID and so D, itself is a principal ideal of D. One writes $D = (n_0)$ for aome $n_0 \in D$. So every element of D is a multiple of $n_0 \in D$. Therefore, $n_0 = n_0 e$ for some $e \in D$. If $a \in D$, then $a = bn_0$ for some $b \in D$. Then,

$$ae = (bn_0)e = b(n_0a) = bn_0 = a.$$

As the Euclidean domain is commutative, e serves as the required unit element.

4.1 Divisibility Properties

Definition 4.3. Let R be a commutative ring with unity 1_R . Suppose $a \neq 0$ and b are elements of R. One says that a divides b which is, symbolically, expressed as $a \mid b$. When a does not divide b one writes $a \nmid b$. It follows that

- 1. If $a \mid b$ and $b \mid c$, then $a \mid c$.
- 2. if $a \mid b$ and $a \mid c$, then $a \mid (b \pm c)$.
- 3. If $a \mid b$, then $a \mid bc$ for all $c \in R$.

Definition 4.4. Let R be a commutative ring with unity. Given $a, b \in R$, an element d in R is called the greatest common divisor (g.c.d) of a and b, if

- 1. $d \mid a \text{ and } d \mid b$
- 2. whenever $c \in R$ is such that $c \mid a \text{ and } c \mid b$, then $c \mid d$.

Remark 4. The notation d = (a, b) is used to denote the g.c.d of a and b.

Theorem 4.5. Given a Euclidean ring D, any two elements a, b of D have a greatest common divisor g. Moreover, g = xa + yb for some $x, y \in D$.

Demonstração. Let A be the set of elements of the form ka + lb where k, l vary over the elements of D.

Claim. A is an ideal of D

Since A is the set of elements of the form ka + lb, suppose that $sa + tb \in A$, for some $s, t \in D$.

$$m = k_1 a + l_1 b, \quad n = k_2 a + l_2 b.$$

Then, $m \pm n = (k_1 \pm k_2)a + (l_1 \pm l_2)b \in A$. Similarly, for any $r \in D$,

$$rm = r(k_1a + l_1b)$$
$$= (r(k_1)a + (rl_1)b \in A$$

Since A is an ideal of D, by theorem 4.2 there exists an element $a_0 \in A$ such that every element in A is a multiple of a_0 . Since $a_0 \in A$ and every element of A is of the form sa + tb,

$$a_0 = s_1 a + t_1 b$$
 for some $s_1 t_1 \in D$

By remark (3) D has a unit element say 1_D . Then,

$$a = 1_D a + 0_D b \in A; \quad b = 0_D a + 1_D b \in A.$$
 (**)

As a and b are elements of A by $(^{**})$, one has $a_0 \mid a, a_0 \mid b$.

Lastly, suppose that $c \in D$ is such that $c \mid a$ and $c \mid b$ then $c \mid s_1a + t_1b = a_0$. Therefore, a_0 satisfies the conditions for a being the g.c.d of a and b. In other words, any two elements a, b in D have a greatest common divisor g which is a linear combination of a and b.

Definition 4.6. Let D be an integral domain with unit element 1_D . An element $a \in D$ is a unit in D if there exists an element $b \in D$ such that $ab = 1_D$.

Theorem 4.7. Suppose that $a, b \in D$ are such that $a \mid b$ and $b \mid a$ hold. Then, a = ub where u is a unit in R.

Demonstração. Since $a \mid b$, one could writeb = sa for some $s \in D$. Since $b \mid a, a = tb$ for some $t \in D$. Then, b = sa = s(tb) = (st)b. As a, b belong to an integral domain, canceling b from b = (st)b one gets $st = 1_D$. Or, s is a unit in D and t is a unit in D and so a = ub where u is a unit.

Definition 4.8. Let D be an integral domain with unit element. Two elements $a, b \in D$ are said to be associates if b = na for some unit n in D.

It is verified that in a Euclidean ring D with unity 1_D two greatest common divisors of two given elements of D are associates.

Theorem 4.9. Let D be a Euclidean ring having elements a, b (say). If b is not a unit in D, then d(a) < d(ab).

Demonstração. Consider the ideal $A = (a) = \{xa : x \in D\}$ of D. By the property of a Euclidean ring, $d(a) \leq d(xa)$ for $0 \neq X \in D$. That is, the *d*-value of a is the minimum among *d*-values of elements of A. Suppose that $ab \in A$. If d(ab) = d(a), it could be deduced that the *d*-value of ab is, also, minimal and every element in A is a multiple of ab. It follows that a = abs for some $s \in D$. As D is an integral domain, cancellation law allows one to conclude that $bs = 1_D$. that is to say b is a unit in D, contrary to the assumption that b is not a unit. The conclusion is that d(a) < d(ab).

Definition 4.10. In a Euclidean ring D, a non-unit π s called a prime element of D whenever $\pi = ab$, where $a, b \in D$, either a or b is a unit.

Theorem 4.11. Let D be a Euclidean ring. Then, every element of D is either a unit in D or can be written as a product of prime elements of D.

Demonstração. Given $a \in D$, proof is by induction d(a). If $d(a) = d(1_D)$, then a is a unit in D and so the first part of the theorem holds.

It is assumed that the theorem is true for all elements x in D such that d(x) < d(a). The approach is to show that the theorem is true for a, also, by mathematical induction.

If a is a prime in D, the conclusion of the theorem is obvious. Suppose that a s not a prime in D. Then, a could be displayed as a = bc where neither b nor c is a unit in D. By theorem 4.9,

$$d(b) < d(bc) = d(a)$$

and $d(c) < d(bc) = d(a)$.

By introduction hypothesis, b and c could be written as products of a finite number of prime elements of D. That is,

$$b = \pi_1 \cdot \pi_2 \cdot \ldots , \pi_n, \ c = \pi'_1 \cdot \pi'_2 \ldots \pi'_m$$

where $\pi_i, \pi'_j (i = 1, 2, ..., n; j = 1, 2, ..., m)$ are prime elements of D. So, then, $a = bc = \pi_1 \cdot \pi_2 \cdot ... \cdot \pi_n \cdot \pi'_1 \cdot \pi'_2 \cdot ... \cdot \pi'_m$ or , a is capable of factorization into prime elements of D. This concludes the proof.

Example 4.12. The ring \mathbb{Z} of integers, being a Euclidean domain, is a unique fatorization domain.

General Notions Occurring in Number Theory

- N1 The number of primes is infinite.
- N2 Let p be a prime and a, b given integers. If $p \mid ab$, then either $p \mid a$ or $p \mid b$.
- N3 Any two integers have a g.c.d
- N4 Given an integer n. n has the prime factorization

$$n = p_1^{a_1} p_2^{a_2} \dots p_k^{a_k} \ (a_i \ge 0, i = 1, 2, \dots, k)$$

and p_1, p_2, \ldots, p_k are distinct primes.

That is, unique factorization theorem holds for the set of integers

N5 Given an integer n, one could find out the least prime p dividing n

General Notions Occurring in Algebra

- A1 Let R be a principal ideal domain. Then R is semi-simple if, and only if, R is either a field or has an infinite number of maximal ideals.
- A2 Let D be a Euclidean ring. Suppose that π is a prime element in D. If $\pi \mid ab$ where $a, b \in D$, then π divides either a or b.
- A3 Let D be a Euclidean ring. Any two elements $a,b \in D$ have a greatest common divisor.
- A4 let D be a Euclidean ring. An element a of D has a unique factorization primes $\pi_1, \pi_2, \ldots, \pi_n$.

That is, $a = \pi_1^{a_1} \pi_2^{a_2} \cdots \pi_n^{a_n}$.

A5

Definition 4.13. Let R be a commutative ring with unity 1_R . Suppose that I denotes an ideal of R. The nil radical of I written \sqrt{I} is the set

 $\sqrt{I} = \{r \in R : r^n \in I \text{ for some integer } n \in \mathbb{Z}(n \text{ varies with } r)\}$

In the ring \mathbb{Z} of integers, when $n \in \mathbb{Z}$ is such that

$$n = p_1^{a_1} p_2^{a_2} \dots p_k^{a_k}$$

the nil radical of the principal ideal (n) is such that

 $\sqrt{(n)} = (p_1 p_2 \dots p_k)$ the ideal generated by the product $p_1 p_2 \dots p_k$.

For, Let $a = \max\{a_1, a_2, \ldots, a_k\}$. Write the integer $t = p_1 p_2 \ldots p_k$. Then, $t^a \in$ the ideal generated by n. So, then, $(p_1, p_2, p_k) \subseteq \sqrt{(n)}$, the radical of the ideal generated by n. For some integer m, if $m \in \sqrt{(n)}$, then m is divisible by each of the primes p_1, p_2, \ldots, p_k . That is, m is an element of the ideal $(p_1) \cap (p_2) \cap \ldots \cap (p_k) = (p_1 p_2 \ldots p_k)$. Thus, the nil radical of (n) is the ideal generated by $p_1 p_2 \ldots p_k$ [1j] One could choose a least prime among the primes.

Referências

[1]	David M. Burton: A first course in RINGS AND IDEALS, Addison Wesley	y Pu-
	blishing Company, Reading, Marsachusetts. Mento Park, California, London	. Don
	Mills, Onatario (1970) page 71.	
[a] 1		0.10

	[Ia]
page 73.	[1b]
	[1c]
page 74.	[1d]
	[1e]
page 73.	[1f]
	[1g]
	[1h]
page 99.	[1i]
page 79.	[1j]

- [2] I. N. Hersiten : Topics in Algera, Blaisdell Publishing company. Adivision of Ginn and Company. New York Toronto London First Edition (1964) Third Printing (1965) pp 104–109
- [3] T.Motzkin, The Euclidean Algorithm, Bull.Amer.Math,Soc. Vol 55 (1949)pp 1142– 1146.

Accept in 12 September 2024.