CONNECTIONS AND IMPLICATIONS AMONG THE GELFAND-MAZUR, FUNDAMENTAL THEOREM OF ALGEBRA AND LIOUVILLE'S THEOREM
DOI:
https://doi.org/10.34179/revisem.v10i2.22151Resumo
The study of fundamental theorems in functional analysis often highlights deep interconnections between results that, at first glance, may appear independent. In this paper, we investigate the relationships between three classical results: Gelfand-Mazur Theorem, Liouville's Theorem and Fundamental Theorem of Algebra. While previous
works have explored equivalences between pairs of these theorems, a systematic study of their mutual implications remains less developed. This paper aims to systematically explore the equivalences between these three theorems, as the literature often compares only two of them at a time. Here, we seek to highlight their mutual connections simultaneously, providing a broader understanding of their interplay. Our approach builds upon established results and techniques, offering a unified perspective that sheds light on their deeper structure.
Keywords: Gelfand-Mazur, Liouville, Fundamental Theorem of Algebra, Complex Analysis.
Downloads
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Robledo Sette

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Licença Creative Commons
| Todos os artigos publicados nesta revista estão licenciados sob a Creative Commons Atribuição 4.0 Internacional (CC-BY 4.0). Isso significa que qualquer pessoa pode copiar, distribuir, remixar, adaptar e utilizar os artigos para qualquer fim, inclusive comercial, desde que seja fornecida a devida atribuição aos autores e à revista. Para mais informações sobre esta licença, acesse: https://creativecommons.org/licenses/by/4.0/ |