Uma GENERALIZAÇÃO DO PEQUENO TEOREMA DE FERMAT VIA SISTEMAS DINÂMICOS E A SOLUÇÃO DE UM PROBLEMA DE L. LEVINE
Resumen
Fixado um inteiro $k\geq 1$, Levine \cite{Levine} considera o sistema dinâmico definido pela função $f(z)=z^k$ no círculo unitário $\mathbb{S}^1$ e prova que $\sum_{m|n}\mu(n/m)\mathcal{N}_m$ é divisível por $n$, generalizando assim o pequeno teorema de Fermat. A notação $\mathcal{N}_m$ indica o número de pontos fixos de $f^m$ em $\mathbb{S}^1$ e $\mu$ é a função de Möbius. Ao mesmo tempo o autor deixa em aberto uma pergunta: dada uma sequência de inteiros $(p_m)_m$ não-negativos, existe alguma função $f$ que realiza essa sequência, ou seja, $p_m=\mathcal{N}_m$ e satisfaz o critério de divisibilidade? Neste artigo revisitamos o conhecido teorema de Euler usando polinômios de Chebyshev, seguindo Carrillo e Guzmán \cite{Carrillo} e Frame \emph{et al} \cite{Frame}, e respondemos negativamente à pergunta de Levine com um argumento baseado no teorema de Sharkovsky.
Descargas
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Arlane Vieira, Lucas Bispo Cruz
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Licença Creative Commons
Permite remixagem, adaptação e nova criação a partir da obra para fins não comerciais, e que seja atribuído o crédito ao autor (CC BY-NC) |