A SPECIAL RANDERS SPACE AS A CONCRETE MODEL OF FLAT NON-EUCLIDEAN GEOMETRY: RANDERS INFINITE RULE AXIOM

A SPECIAL RANDERS SPACE AS A CONCRETE MODEL OF FLAT NON-EUCLIDEAN GEOMETRY: RANDERS INFINITE RULE AXIOM

Authors

  • Marcelo Almeida de Souza Instituto de Matemática e Estatística/ Universidade Federal de Goiás
  • Newton Mayer Solórzano Cháves Universidade Federal da Integração Latino-Americana - Unidade PTI: Foz do Iguacu, Paraná, BR

DOI:

https://doi.org/10.34179/revisem.v9i4.20843

Abstract

In this work we study a specific model of non-Euclidean geometry, where the Cartesian plane is endowed with a special Randers metric. The way of measuring distances in this new geometry is not symmetric. Here the geodesics continue to be straight lines and due to the non-symmetry of this perturbed metric, we obtain two notions of the infinite ruler axiom.

Keywords: Ruler Axiom, Randers Metric, Plane Geometry.

Downloads

Download data is not yet available.

Published

2024-12-20

How to Cite

Souza, M. A. de, & Solórzano Cháves, N. M. (2024). A SPECIAL RANDERS SPACE AS A CONCRETE MODEL OF FLAT NON-EUCLIDEAN GEOMETRY: RANDERS INFINITE RULE AXIOM. Revista Sergipana De Matemática E Educação Matemática, 9(4), 11–26. https://doi.org/10.34179/revisem.v9i4.20843
Loading...