ARITHMETIC FUNCTIONS VERIFYING A RECURRENCE RELATION, COMPOSITIONS AND BELL POLYNOMIALS
DOI:
https://doi.org/10.34179/revisem.v9i3.21793Abstract
In the work we apply the Z-transform to the recurrence of Cauchy convolution type, satisfied by several arithmetic functions, to obtain its solution in terms of the complete Bell polynomials. One of the most important arithmetic function used here is sigma1(n), the function that sum all positive divisors of n. Our main result can be applied to find a closed formula for the number of k-colored partitions, sum of triangular numbers and more.
Downloads
Download data is not yet available.
Downloads
Published
2024-10-14
How to Cite
Alegri, M., Bulnes, J., Kim, T., & Bonilla, J. L. (2024). ARITHMETIC FUNCTIONS VERIFYING A RECURRENCE RELATION, COMPOSITIONS AND BELL POLYNOMIALS. Revista Sergipana De Matemática E Educação Matemática, 9(3), 25–34. https://doi.org/10.34179/revisem.v9i3.21793
Issue
Section
Mathematics
License
Copyright (c) 2024 Mateus Alegri
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Licença Creative Commons
Permite remixagem, adaptação e nova criação a partir da obra para fins não comerciais, e que seja atribuído o crédito ao autor (CC BY-NC) |