In the work we apply the Z-transform to the recurrence of Cauchy convolution type, satisfied by several arithmetic functions, to obtain its solution in terms of the complete Bell polynomials. One of the most important arithmetic function used here is sigma1(n), the function that sum all positive divisors of n. Our main result can be applied to find a closed formula for the number of k-colored partitions, sum of triangular numbers and more.
DOI:
https://doi.org/10.34179/revisem.v9i3.21793Resumen
In the work we apply the Z-transform to the recurrence of Cauchy convolution type, satisfied by several arithmetic functions, to obtain its solution in terms of the complete Bell polynomials. One of the most important arithmetic function used here is sigma1(n), the function that sum all positive divisors of n. Our main result can be applied to find a closed formula for the number of k-colored partitions, sum of triangular numbers and more.
Descargas
Los datos de descargas todavía no están disponibles.
Descargas
Publicado
2024-10-14
Cómo citar
Alegri, M., Bulnes, J., Kim, T., & Bonilla, J. L. (2024). In the work we apply the Z-transform to the recurrence of Cauchy convolution type, satisfied by several arithmetic functions, to obtain its solution in terms of the complete Bell polynomials. One of the most important arithmetic function used here is sigma1(n), the function that sum all positive divisors of n. Our main result can be applied to find a closed formula for the number of k-colored partitions, sum of triangular numbers and more. Revista Sergipana De Matemática E Educação Matemática, 9(3), 25–34. https://doi.org/10.34179/revisem.v9i3.21793
Número
Sección
Matemática
Licencia
Derechos de autor 2024 Mateus Alegri
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Licença Creative Commons
Permite remixagem, adaptação e nova criação a partir da obra para fins não comerciais, e que seja atribuído o crédito ao autor (CC BY-NC) |