ARITHMETIC FUNCTIONS VERIFYING A RECURRENCE RELATION, COMPOSITIONS AND BELL POLYNOMIALS
DOI :
https://doi.org/10.34179/revisem.v9i3.21793Résumé
In the work we apply the Z-transform to the recurrence of Cauchy convolution type, satisfied by several arithmetic functions, to obtain its solution in terms of the complete Bell polynomials. One of the most important arithmetic function used here is sigma1(n), the function that sum all positive divisors of n. Our main result can be applied to find a closed formula for the number of k-colored partitions, sum of triangular numbers and more.
Téléchargements
Les données relatives au téléchargement ne sont pas encore disponibles.
Téléchargements
Publiée
2024-10-14
Comment citer
Alegri, M., Bulnes, J., Kim, T., & Bonilla, J. L. (2024). ARITHMETIC FUNCTIONS VERIFYING A RECURRENCE RELATION, COMPOSITIONS AND BELL POLYNOMIALS. Revista Sergipana De Matemática E Educação Matemática, 9(3), 25–34. https://doi.org/10.34179/revisem.v9i3.21793
Numéro
Rubrique
Matemática
Licence
(c) Tous droits réservés Mateus Alegri 2024
Ce travail est disponible sous licence Creative Commons Attribution - Pas d’Utilisation Commerciale 4.0 International.
Licença Creative Commons
Permite remixagem, adaptação e nova criação a partir da obra para fins não comerciais, e que seja atribuído o crédito ao autor (CC BY-NC) |