USING BERNOULLI NUMBERS TO GENERALIZE A LIMIT OF FINITE SUM ARISING FROM VOLUME COMPUTATIONS WITH THE SQUEEZE THEOREM

USING BERNOULLI NUMBERS TO GENERALIZE A LIMIT OF FINITE SUM ARISING FROM VOLUME COMPUTATIONS WITH THE SQUEEZE THEOREM

Autores/as

  • Rudimar Nos UTFPR
  • Mari Sano
  • Maria Tavares

DOI:

https://doi.org/10.34179/revisem.v6i3.15917

Resumen

We developed in this work the computation of the volume of the sphere via the method of exhaustion by inscribed truncated right cones. We show that this computation can be used in calculus courses in several ways; mainly, to motivate and clarify the usage of the squeeze theorem in the computations of sum limits. As a result, we generalized a sum limit using Bernoulli numbers, producing a magnificent example of applied mathematics, and highlighting the importance of exploring when studying mathematics.

Descargas

Los datos de descargas todavía no están disponibles.

Publicado

2021-10-25

Cómo citar

Nos, R., Sano, M., & Tavares, M. (2021). USING BERNOULLI NUMBERS TO GENERALIZE A LIMIT OF FINITE SUM ARISING FROM VOLUME COMPUTATIONS WITH THE SQUEEZE THEOREM. Revista Sergipana De Matemática E Educação Matemática, 6(3), 77–96. https://doi.org/10.34179/revisem.v6i3.15917
Loading...