USING BERNOULLI NUMBERS TO GENERALIZE A LIMIT OF FINITE SUM ARISING FROM VOLUME COMPUTATIONS WITH THE SQUEEZE THEOREM

USING BERNOULLI NUMBERS TO GENERALIZE A LIMIT OF FINITE SUM ARISING FROM VOLUME COMPUTATIONS WITH THE SQUEEZE THEOREM

Auteurs

  • Rudimar Nos UTFPR
  • Mari Sano
  • Maria Tavares

DOI :

https://doi.org/10.34179/revisem.v6i3.15917

Résumé

We developed in this work the computation of the volume of the sphere via the method of exhaustion by inscribed truncated right cones. We show that this computation can be used in calculus courses in several ways; mainly, to motivate and clarify the usage of the squeeze theorem in the computations of sum limits. As a result, we generalized a sum limit using Bernoulli numbers, producing a magnificent example of applied mathematics, and highlighting the importance of exploring when studying mathematics.

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Téléchargements

Publiée

2021-10-25

Comment citer

Nos, R., Sano, M., & Tavares, M. (2021). USING BERNOULLI NUMBERS TO GENERALIZE A LIMIT OF FINITE SUM ARISING FROM VOLUME COMPUTATIONS WITH THE SQUEEZE THEOREM. Revista Sergipana De Matemática E Educação Matemática, 6(3), 77–96. https://doi.org/10.34179/revisem.v6i3.15917
Loading...