Un enfoque basado en Kinect para mejorar la experiencia de aprendizaje de los estudiantes
DOI:
https://doi.org/10.29276/redapeci.2018.18.29594.164-176Resumo
El uso generalizado de mundos virtuales ha motivado a los profesores a explotar las características innovadoras de los entornos 3D interactivos para maximizar la experiencia de aprendizaje de los estudiantes a través de cursos virtuales. Uno de los principales desafíos en el aprendizaje a distancia es la falta de herramientas que los maestros necesitan usar. Por lo general, los mundos virtuales se utilizan con fines educativos; sin embargo, no se adaptan especialmente para tratar un curso virtual. En este documento, presentamos KTeacher, una herramienta basada en kinect para apoyar el desarrollo de cursos virtuales. Para validar KTeacher, diseñamos un curso virtual y lo comparamos con el mismo curso ofrecido con una herramienta ampliamente utilizada en educación a distancia. Después de realizar ambos cursos, medimos los aspectos relacionados con la usabilidad, la funcionalidad y la percepción de KTeacher desde los puntos de vista del estudiante y el docente a través de una encuesta. Finalmente, los resultados muestran que las opiniones de los estudiantes fueron considerablemente positivas en cuanto a la sensación de inmersión y el interés generado por KTeacher. Además, los profesores estaban satisfechos con la posibilidad de editar fácilmente las clases desarrolladas con KTeacher.Downloads
Referências
ANDRADE, A., FERREIRA, S. A. Aspetos Morfológicos do Tratamento de dados na Gestão Escolar: O Potencial do Analytics. Revista Portuguesa de Investigação Educacional, Porto, v. 16, p. 289-316, 2016.
ARAÚJO, R. T. S. et al. A statistical analysis of the learning effectiveness in online engineering courses. In: IEEE Latin America Transactions, v. 15, n. 2, p. 300-309, 2017.
BARWELL, G., MOORE, C., WALKER, R. (2011). Marking machinima: A case study in assessing student use of a Web 2.0 technology. Australasian Journal of Educational Technology, v. 27, n. 5, p. 765-780, 2011.
AVANCINI, M. Using kinect to emulate an interactive whiteboard. 2011. 129 f. Tese (Mestrado em Informática). Universitá decli Studi di Trento, Trento, 2011.
BOSETTI, M. et al. Interactive whiteboards based on the WiiMote: Validation on the field. In: Interactive Collaborative Learning (ICL), International Conference, 14th, p. 269-273, 2011.
BOWER, M. A typology of Web 2.0 learning technologies. Educause, feb, 8, 2015.
BOULOS, M. N. K., HETHERINGTON, L., WHEELER, S. Second Life: an overview of the potential of 3‐D virtual worlds in medical and health education. Health Information & Libraries Journal, v. 24, n.4, 233-245, 2007.
BRUSILOVSKY, P. Web Lectures: electronic presentations in web-based instruction. Syllabus Magazine, vl. 13, n. 5, p. 18-23, 2000.
CRELLIN, J., ET AL. Virtual worlds in computing education. Computer Science Education, v. 19, n. 4, p. 315-334, 2009.
DALGARNO, B. ET AL. 3D immersive virtual worlds in higher education: an Australian and New Zealand scoping study. In: ASCILITE 2010: 27th Annual Conference of the Australasian Society for Computers in Learning in Tertiary Education: Curriculum, Technology and Transformation for an Unknown Future, 27th, 2010, University of Queensland. Proceedings. p. 269-280.
DRAPER, J. V., KABER, D. B., USHER, J. M. (1998). Telepresence. Human factors, v. 40, n. 3, p. 354-375, 1998.
DUNCAN, I., MILLER, A., JIANG, S. A taxonomy of virtual worlds usage in education. British Journal of Educational Technology, v. 43, n. 6, p. 949-964, 2012.
ENGSTRAND, S. M., HALL, S. The use of streamed lecture recordings: patterns of use, student experience and effects on learning outcomes. Practitioner Research in Higher Education, v. 5, n.1, p. 9-15, 2011.
IBAÑEZ, R. et at. Easy gesture recognition for Kinect. Advances in Engineering Software, v. n. 76, p. 171-180, 2014.
________. et al. Approximate string matching: a lightweight approach to recognize gestures with Kinect. Pattern Recognition, n. 62, p. 73-86, 2017.
LI, J., D'SOUZA, D., DU, Y. Exploring the contribution of virtual worlds to learning in organizations. Human Resource Development Review, v. 10, n. 3, p. 264-285, 2011.
LUI, A. K., NG, V. S., CHAN, C. H. Gesture-Based interaction for seamless coordination of presentation aides in lecture streaming. In. International Conference on ICT in Teaching and Learning (pp. 108-119). Springer, Berlin, Heidelberg, jul, p.108-119, 2013.
OLIVEIRA, J. Martins et al. Complementary treatment for children with cerebral palsy based on virtual reality. IEEE Latin America Transactions, v. 14, n. 8, p. 3820-3825, ago, 2016.
OMALE, N. et al. Learning in 3‐D multiuser virtual environments: exploring the use of unique 3‐D attributes for online problem‐based learning. British Journal of Educational Technology, n. 40, v. 3, p. 480-495, 2009.
RILEY, L., STACY, K. Teaching in virtual worlds: opportunities and challenges. Setting Knowledge Free: The Journal of Issues in Informing Science and Information Technology, n. 5, v. 5, p. 127-135, 2008.
RODRIGUEZ, G., SORIA, Á., CAMPO, M. Virtual Scrum: a teaching aid to introduce undergraduate software engineering students to scrum. Computer Applications in Engineering Education, v. 23, n. 1, p. 147-156,2015.
SLATER, M. Measuring presence: A response to the Witmer and Singer presence questionnaire. Presence: teleoperators and virtual environments, v. 8, n. 5,, p. 560-565, 1999.
QIAN, Y. 3D multi-user virtual environments: Promising directions for science education. Science Educator, n. 18, v.2, p. 25, 2009.
UNIT, E. I. The 2008 e-readiness rankings, 2008.
WANG, F., NGO, C. W., PONG, T. C. Gesture tracking and recognition for lecture video editing. In: 17th International Conference on. Proceedings, v. 3, ago, p. 934-937, 2004.